
9010A Language
Compilar

�
P/N 661 504
December 1 983
C1983 John Fluke Mfg. Co., lnc.,
all rights reservad. Litho in U.S.A.

NOTICE
This manual describes unpubl ished Software which contains the trade secrets
and confidential proprietary information of John F luke Mfg. Co., l nc. and
which embodies substantial creative effort, ideas, and expressions. THE
SOFTWARE IS PROVIDED UNDER LICENSE FROM FLUKE. F luke g rants
Licensee a perpetua! non-excl usive l icense to use this material and make up to
three copies for backup pu rposes without written permission from F luke.

THIS SOFTWARE IS LICENSED FOR USE ON A SINGLE COMPUTER
SYSTEM.

LIMITED WARRANTY
Fluke warrants that the Software has been properly recorded on non-defectiva
diskettes. Fluke does not warrant the Software to be error free. F luke wi l l
replace such diskettes without charge if Fluke in good faith determines that
such d iskettes were not su bject to m isuse and if returned to a F luke Technical ··�
Service Center, within n inety (90) days of shipment. Refer to your 901 0A
Operator M anual for a l isting of locations. Fluke reserves the right to change
the specifications and operating characteristics of the Software it produces,
over a period of time, without notice.

FLUKE GRANTS NO OTHER WARRANTIES, EITHER EXPRESSED OR
IMPLIED, INCLUDING ANY IM PLIED WARRANTIES OF M ERCHANTABIL
ITY OR FITNESS FOR A PARTICULAR PURPOSE OR USE. IN NO EVENT
SHALL FLUKE BE LIABLE FOR ANY LOSS OF DATA, USE, PROFITS OR
GOODW ILL, OR F OR D IR ECT, IN D IR ECT, S P E C IAL, IN C ID ENTAL,
CONSEQUENTIAL OR OTHER SIMILAR DAMAGES AS A RESULT OF ANY
MATTER RELATED TO THIS AGREEM ENT, REGARDLESS OF THE FORM
OF THE ACTION.

Copyright (©)1 983 John F luke Mfg. Co., l nc.,
P.O. Box C9090, Everett, Washington 98206

Contents

1 I NTRODUCTION 1 -1
Introduction to the 90 1 0A Language Compiler 1 -3
The Host Computer System . 1 -4
How the Compiler W orks . 1 -5
Language Extensions . 1 -6
The 90 10A Language Compi ler Package 1 -7

2

Disk Verification Program . 1 -7
Compiler . 1 -7
Fi le Transfer Program . 1 -7
Pod Data Files . 1 -8

Use With the 9005A 1 -8

HOW TO USE THIS MANUAL
Introduction . .

Organization . .

S uggested U se . .

2-1
2-3
2-4
2-5

3 GETTI NG STARTED . 3-1
Introduction . 3-3
Fluke 1 72CA Instrument Controller . 3-4

Introduction . 3-4
What Y o u N eed . 3-4
Backing U p the Program Diskette " 3-4
Verifying the W orking Diskette . 3-5
Hooking Up the System . 3-6
S ystem Dependencies . 3-8

Test Editor . 3-8
Disk Space . 3-8
Compiler Organization . 3-8

(continued on page ii)

CONTENTS, continued

Fluke 1 722A Instrument Controller . 3-9
Introduction . 3-9
What Y o u N eed . 3-9
Backing U p the Program Diskette . 3-9
Verifying the W orking Diskette . 3-1 O
Hooking Up the System . 3-10
System Dependencies . 3-12

Text Editor . 3-12
Disk Space . 3-12

IBM Personal Computer . 3-1 3
Introduction . 3- 13
What You Need . 3-1 3
Backing U p the Program Diskette . 3-14
Verifying the Working Diskette . 3-14
Hooking Up the System . 3-1 5
System Editor . 3-1 6
RETURN Key . 3-16

CP j M Operating Systems . 3-17
Introduction . 3- 17
What You Need . 3- 17
Backing Up the Program Diskette . 3-1 8
V erifying the W orking Diskette . 3- 18
Hooking Up the System . 3-1 9
lnstaUing Software . 3-20
Editor . 3-20

4 WRITING PROGRAMS . 4-1
Introduction . 4-3
Part 1 : General Program Format . 4-4

lntroduction . 4-4
Important Details . 4-5
Program Comments . 4-7
90 10A Programs . 4-8
Address Space Information . 4-8
Setup Information . 4-9
Pod Data Files . 4-1 1
90 1 0A/ Pod Interaction . 4-1 2
Sample Program . 4-1 3

Part 2: Coding Shortcuts . 4-1 6
Introduction . 4-1 6
Optional Keywords and Keyword Abbreviations 4-1 7
Unary Operator Shorthand . 4-1 8
Default Entries . 4-1 8
File lnclusion . 4-19

(continued on page iii) ii

CONTENTS, continued

Sample Program . 4-20
Part 3 : Symbolic Names . 4-22

Introduction . 4-22
Symbolic Program Names . 4-24
S ymbolic Labels . 4-26
Symbolic Register Names . 4-28
Predefined Register N ames . 4-29
Sample Program . 4-30

5 USING THE COMPILER 5-1
lntroduction . 5-3
Preparing the Source File . 5-4
Compiling . 5-5

Interactive Mode . 5-6
Command Line Mode . 5-8
Listing File Options . 5-10
Syntax Errors . 5-1 1

Transferring Programs . 5-1 2
Transferring Programs t o the 901 0A 5-12
Transferring Programs from the 90 10A 5-14
Source Format . 5-14
Hex Format . 5-1 6

6 LANGUAGE REFERENCE 6-1
Introduction . 6-3
Syntax Diagram N otation . 6-4
Special Symbols . 6-5
Symbolic Names . 6-6
Expressions . 6-8
Addresses . 6-1 O
General lnformation . 6-1 1
Statement Format . 6-1 1
Program Comments . 6-1 1
File lnclusion . 6-12

SOURCE FILE SYNTAX 6-1 3
Source File . 6-1 5
Setup . 6-1 7
Address Space . 6-1 9
Address Descriptor . 6-2 1
Global Declaration . 6-23
Symbolic Register Name Declaration . 6-25
90 10A Program . 6-27
Program Body . 6-29

¡¡¡ (continued on page iv)

CONTENTS, continued

··�

Local Declaration . . 6-3 1
Binary Program . . 6-33
Include Directive . . 6-35

SETUP PARAMETERS 6-37
Beep · · . . . · 6-39
Bus Test . . 6-41
Enable . . 6-43
Exercise Errors . . 6-45
Linesize . . 6-47
Newline . . 6-49
Pod . · · · · · · · · · · · · · · · · · 6-5 1
Run UUT . . 6-53
Stallj Unstall . . 6-55
Timeout . . 6-57
Trap · · · · . · 6-59

901 0A PROGRAM STATEMENTS 6-61
Atog , · 6-63
Auto Test . . 6-65
Aux . . 6-67
Bus Test . . 6-7 1
Dpy . . 6-73
Dtog . . 6-77
Execute . . 6-79
Goto . . 6-8 1
If . . 6-83
10 Test . . 6-85
Label . . 6-87
Learn . . 6-89
Probe . . 6-9 1
RAM Test . . 6-93
RAMP . . 6-95
Read . · · . . · · · · · · · · · · · · · 6-97
Reg . . 6-99
Reptj Loop . · . . 6-1 0 1
ROM Test . . 6-103
Run UUT . . 6-105
Stop . . 6-1 07
Sync . . 6-109
Unary . .

Walk . · · · · · · · · ·

6-1 1 1
6-1 1 3

Write . · · · . · · . . · · 6-1 1 5

(continued on page v) iv

CONTENTS, continued

APPENDICES

A Keywords . A-1
B Predefined Register N ames . B-1
C Optional Keywords and Keyword Abbreviations C-1
D Default Setup Parameters . D-1
E Parameter Limits . E-1
F Error Messages . F-1

I NDEX

vtvi

CONTENTS

Section 1
1 ntroduction

I ntroduction to the 90 10A Language Compiler 1 -3
The Host Computer System . 1 -4
How the Compiler Works . 1 -5
Language Extensions . 1 -6
The 9010A Language Compi1er Package 1 -7

Disk V erification Program . 1 -7
Compiler . 1 -7
File Transfer Program . 1 -7
Pod Data Files . 1 -8

Use With the 9005A . 1 -8

1 -1 /1 -2

INTRODUCTION TO THE 901 0A LANGUAGE COMPILER

The 901 0A Language Compiler package is used to create test and
troubleshooting programs for the Fluke 90 1 0A M icro-System
Troubleshooter.

The 90 1 0A is an excellent tool for interactive troubleshooting, and
many users may want to take advantage of its power by writing
extensive test programs. While the 90 10A itself is very convenient for
entering relatively short programs, it may be advantageous to create
and maintain large, elaborate, or complex programs using a host
computer's editing and file management facilities . The 90 1 0A
Language Compiler allows 90 l OA programs to be developed
conveniently on a host computer system and then transferred to the
9010A for execution.

1 -3

l ntroduction

THE HOST COMPUTER SYSTEM

The illustration shows the 90 l OA connected by an RS-232-C serial
interface to a host computer system. Fluke currently supports the
90 10A Language Compiler on the fol l owing computer systems:

• Fluke 1 720A and 1 722A Instrument Controllers

• Most Z80 CP 1 M systems with 8-inch disk drives

• Kaypro 1 1

• IBM Personal Computers (PC and XT)

Registered Trademarks:

Z-80: Zilog

CP/M: Digital Research Inc.

Kaypro: Kaypro Corp.

IBM: Intemational Business Machines

1 -4

··�

1 ntroduction

HOW THE COMPILER WORKS

The 90 1 OA is able to read and write test programs via its auxiliary RS-
232-C interface. The en tire contents of the 90 1 OA program memory,
including setup parameters and address space descriptors, are
transferred through the serial interface in a special hex data format.
The 90 10A Language Compiler takes advantage of this ability of the
90 10A to read programs in hex format.

The test programmer develops the test programs on the host computer
systeni in an ASCII source program form using the full power of the
editing and file storage capabilities of the host system. In this sense, a
90 10A program on the host system is much like a program written in
any other programming language, such as BASIC, FORTRAN, or
Pascal.

Once the program has been written in so urce form, the 90 l OA
Language Compiler program converts the so urce program into the hex
format required for transfer to the 90 1 0A.

The program is then transferred to the 90 1 OA using a transfer program
that is supplied with the compiler package, and the hex format
program is read into Troubleshooter memory by pressing the AUX
1/ F and READ keys on the 901 O A.

1 -5

l ntroduction

LANGUAGE EXTENSIONS

1 -6

The 90 1 0A Language Compiler accepts any program that can be
ente red through the 90 1 OA keyboard. In fact, the syntax of the 90 1 OA
Language is compatible with program listings obtained from the
90 10A using the AUX 1 / F SETUP, AUX 1/ F LEARN, and AUX 1/F
PROGM commands described in the 90 10A Operator Manual.

In addition to the standard 90 1 0A commands, however, the 90 10A
Language Compiler provides sorne powerful extensions . These
additional features are designed to make it much easier to develop and
maintain large 90 1 0A programs. Sorne of the key features are:

• Program Comments

• Keyword Abbreviations, Op
tional Command Keywords,
and Shorthand N otation for
Unary Operators

• File Inclusion

• Symbolic Names for Programs,
Labels, and Registers

Allows the test programmer to
incorporate documentation into
the program itself

Minimizes the typing required to
enter a test program on the host
system

Permits common programs to
be conveniently shared by many
source files, reducing the time
r e q u i r e d t o d e v e l o p t e s t
programs for new applications

Allow programs to be written
more clearly, making them
e a s i e r to u n d e r s t a n d a n d
maintain

l ntroduction

THE 901 0A LANGUAGE COMPILER PACKAGE

The 901 0A Language Compiler package consists of this manual and a
diskette that contains severa! programs and data files. The key
software elements of the package are as follows:

Disk Verlflcatlon Program

The Disk Verification Program is a uti1ity program that verifies the
integrity of compiler package files. This program is used to assure that
there are no files missing, that the files are not corrupted, and that they
are compatible versions.

Compller

The compiler is a program that accepts the source file representation of
90 10A programs, including setup parameters and address descriptors,
and produces a corresponding hex format file that can be read into the
901 0A.

The compiler checks for coding errors in the so urce file and displays an
error message whenever an error is detected. If the so urce file contains
errors, then a hex file is not created.

In addition to the hex format output file, the compiler can produce a
listing file containing a modified copy of the so urce file. The listing file
can be requested in severa! optional formats that make the processing
performed by the compiler more visible to the test programmer.

File Transfer Program

The compiler package contains a utility program that is used to
transfer 90 1 OA programs between the host system and the 90 1 O A. The
primary purpose of the file transfer program is to transfer hex files
produced by the compiler to the 90 1 OA for execution, but it can al so be
used to transfer programs from the 90 10A to the host system.

1 -7

lntroduction
9010A Language Compilar Package

Pod Data Fi les

Sorne of the Setup commands of the 90 1 0A Language refer to
information that is specific to particular 901 0A interface pods. Pod
specific information includes the enableable forcing lines, bus test
address, and RUN UUT address.

The 901 0A Language Compiler package contains a pod data file for
each interface pod currently available from Fluk�, The pod data files
provide the information required by the compiler to process the pod
specific Setup commands.

By simply creating new pod data files, the compiler can be updated to
accommodate new pods which are developed in the future.

USE WITH THE 9005A

1 -8

Hex files that are produced by the 90 10A Language Compiler are
compatible with the 9005A as well as the 90 1 0A. However, programs
that are transferred from the host system to a 9005A cannot be edited
on the 9005A, nor can they be written to a cassette tape as they can with
a 901 0A.

-

CONTENTS

Section 2
How to U se This Manual

Introduction . 2-3
Organization . 2-4
Suggested Use . 2-5

2-1 /2-2

How to Use This Manual

INTRODUCTION

This manual is the reference source for the 90 1 0A Language Compiler
and the 90 1 0A Language. It is written with the assumption that the
reader is already familiar with the operation of both the 90 l OA Micro
System Troubleshooter and the host computer system.

If yo u are not familiar with the 90 1 OA , yo u should refer to the 90 l OA
Operator Manual and the 90 lOA Programming Manual and learn how
to use the 9010A before proceeding in this manual. Of course, ifyou are
not familiar with the host computer system, you should read the
instruction manuals provided with your system.

2-3

How to Use This Manual

ORGANIZATION

2-4

The 901 0A Language Compiler User Manual is divided into the
following sections:

l . INTRODUCTION Introduces the 9010A Language
C o mpi ler and the 90 1 OA
Language and describes basic
features.

2. HOW TO USE THIS MANUAL Describes the sections of the
manual and recommends how
each section should be used.

3. GETTING STARTED Describes what you need to get
s t a r t e d u s i n g t h e 9 0 1 OA
Language Compiler with your
particular computer.

4. WRITING PROGRAMS Gives an overview of the 90IOA ··�

5. USING THE COMPILER

6. LANGUAGE REFERENCE

APPENDICES A-F

Language and describes how to
create 9010A source files.

Describes how to use the
compiler and the file transfer
program.

Provides detailed information
on the 90 lOA Language syntax
in a quick-reference format.

Provides other information
about the 9010A Language.

··�

How to Use This Manual

SUGGESTED USE

The sections in this manual appear in the order in which they are
intended to be read by a first-time user of the 90 10A Language
Compiler. Section 1 , lntroduction, provides an overview of the
features of the 90 1 0A Language Compiler. lf you are a first-time user
of the compiler, the introduction gives you an idea of what to expect.

This section, How to Use this Manual, provides guidance in using the
manual so that you can quickly and correctly begin to use the 90 10A
Language Compiler.

Section 3, Getting Started, provides you with the information you need
to get your new compiler running. Before attempting to use the
compiler, it is essential that you read this section thoroughly so that
yo u can avoid pro blems. Getting S tarted shows yo u how to set up your
host computer system and how to connect it to the 90 10A.

Section 4, Writing Programs, uses explanations and examples to
introduce yo u to the 90 1 OA Language and demonstrates how to crea te
901 0A program source files. Everyone should read this section at least
once. When yo u beco me more familiar with the 90 1 OA Language, yo u
will rely less on Section 4 and more on Section 6.

Section 5 , U sing the Compiler, provides information on how to use the
compiler and the file transfer program. This will enable yo u to crea te
hex files and transfer them to the 90 1 0A for execution.

Section 6, Language Reference, contains much of the same
information as Section 4, but the information is more detailed, and it is
organized to enable quick reference. This section is designed for use
when you are in the middle of a program and need specific syntax
information in a hurry.

Appendices A through F provide detailed information about the
90 10A Language. You will probably use the appendices for quick
reference after you have learned how to use the language.

2-5/2-6

Section 3
Getting Started

CONTENTS

lntroduction . 3-3
Fluke 1 720A lnstrument Controller . 3-4

Introduction . 3-4
What Y o u N eed . 3-4
Backing U p the Program Diskette . 3-4
V erifying the W orking Diskette . 3-5
Hooking Up the System . 3-6
S ystem Dependencies . 3-8

Test Editor . 3-8
Disk Space . 3-8
Compiler Organization . 3-8

Fluke 1 722A lnstrument Controller . 3-9
Introduction . 3-9
What Y o u N eed . 3-9
Backing Up the Program Diskette . 3-9
Verifying the W orking Diskette . 3-1 O
Hooking Up the System . 3-10
System Dependencies . 3- 12

Text Editor . 3- 12
Disk Space . 3-12

IBM Personal Computer . 3- 13
Introduction -.. 3- 13
What You Need . 3-1 3
Backing Up the Program Diskette . 3-14
V erifying the W orking Diskette . 3-14
Hooking Up the System . 3-15
System Editor . 3-16
RETURN Key . 3- 16

3-1

CONTENTS, continued

3-2

CP / M Operating Systems . 3-1 7
lntroduction . 3-1 7
What You Need . 3-1 7
Backing U p the Program Diskette . 3- 1 8
V erifying the W orking Diskette . 3- 18
Hooking Up the System . 3-19
Installing Software . 3-20
Editor . 3-20

Getting Started

INTRODUCTION

This section provides the information needed to set up your host
computer system to work with the 90 10A Language Compiler. For
each version of the compiler, the following information is presented:

• What You Need

• Backing U p the
Program Diskette

• Hooking Up the
System

Describes the hardware configuration
required to use the compiler package

Provides the information needed to create
a working copy of the program diskette

Describes how to connect the 90 10A to the
host system and how to set the RS-232-C
serial interface parameters

• System Dependencies Presents other information that is unique
to a particular host system

Y ou should carefully read the instructions that apply to your host
system. It is not necessary for you to read the material that relates to
other host systems.

3-3

Getting Started

FLUKE 1 720A INSTRUMENT CONTROLLER

lntroductlon

The following information applies to the 1 720A version of the 90 l OA
Language Compiler.

What You Need

The following equipment is needed in order to use the compiler
package:

l . Fluke 9005A or 90 10A Micro-System Troubleshooter with
Option 90 1 0A-00 1 , RS-232-C Interface

2. Fluke 1 720A Instrument Controller (Option 1 720A-00 1 ,
128K-Byte E-Disk is recommended.)

3 . Fluke Y1 705 RS-232-C Null Modem Cable and Y l 707 RS-
232-C Interface Cable

···�

4. 901 0A-920 90 1 0A Language Compiler, 1 720A/ 1 722A Version .��

Backlng Up the Program Diskette

3-4

The 90 1 0A Language Compiler package consists of this manual and a
write-protected program diskette containing the compiler itself and
various other programs and data files .

Before using the compiler, you should make a copy of the program
diskette. This copy should be used for normal day-to-day operations,
while the original program diskette should be kept in a safe place as a
backup so that the working copy can be resto red if it is ever damaged.

Complete instructions on how to copy diskettes can be found in the
1 720A File U tility U ser Manual.

Verltylng the Worklng Diskette

Getting Started
1 720A l nstrument Control ler

Once you ha ve created a working copy of the program diskette, yo u
should verify the integrity of its files by running VERIFY, one of the
programs included in the compiler package. To run the VERIFY
program, type

VERIFY <RETURN>

in response to the 1 720A Console Monitor program prompt.

The VERIFY program checks the contents of the 1 720A System
Device (SYO:) to verify the integrity of the Compiler package files. It
calculates a checksum for each of the files and compares it to the
checksum contained in the VERIFY.DAT file . VERIFY.DAT is an
ASCII file that contains a list of filenames and checksums for each of
the files in the compiler package.

Results from the VERIFY program are printed in tabular form as each
file is checked. Missing files or checksum errors (that could indicate
either corrupted files or incorrect version numbers) are reported. If
such problems occur, recopy the diskette and run the VERIFY
program again. Ifproblems persist and you are unable to run any of the
programs, contact a Fluke Technical Service Center.

3-5

Getting Started
1 720A l nstrument Control ler

Hooklng Up the System

3-6

The 1 720A must be connected to the 90 10A whenever you want to
transfer the hex files produced by the compiler to the 90 1 0A for
execution.

l . U se an RS-232-C interface cable and an RS-232-C null modem
cable to connect the auxiliary interface of the 90 lOA to one of
the serial ports on the 1 720A.

KB 1 : or KB2: can be chosen as the serial port on the 1 720A.
XFER, the file transfer program described in Section 5,
Compiler U sage, allows yo u to specify the port name to be used
when transferring files to the 90 10A.

Since XFER defaults to KBI:, it is more convenient to connect
the 90 10A to KBI: if KBI: is not already being used for sorne
other purpose.

2. Set the RS-232-C auxiliary interface parameters on the rear
panel of the 90 1 0A. Suggested settings are:

9600 baud (switch setting 7)
Parity: even
Data bits: 8
Stop bits: 1
Parity: on

90 10A Setup parameter NEWLINE must be set to OOOOODOA
(the 90 1 0A default value) for transferring files.

3 . Set the parameters of the serial port on the 1 720A to
correspond to those of the 90 1 0A. SET, a 1 720A system
program, is included on the program diskette for this purpose.
Refer to the 1720A Set RS-232-C Utility User Manual for a
complete description of how to use the SET utility.

NOTE

Getting Started
1 720A 1 nstrument Control ler

The STALL option must be enabled on the 1720A ifanyfi/es
are to be transferred from the 90JOA to the 1720A. This option
is not required if files are only transferred from the 1720A to
the 90JOA.

Sorne early versions of the 1720A Set RS-232-C Utility
program do not implement the STALL option. Be sure to use
the Set RS-232-C Utility program that is contained in the
90JOA Language Compiler package.

The End of Line character should be set to JO and the End of
File character shou/d be set to 26 (the 1720A default values).

The following example demonstrates how the SET utility can
be used to select the parameters that correspond to the above
90 1 0A settings.

#SET
*KB l : BR 9600 DB 8 PB E SB 1 SI E SO E
*EX

Since the 1 720A serial port parameters must be reestablished
every time the 1 720A is turned on, you will probably want to
incorporate the necessary commands into a system command
file. The 1 720A Floppy Disk Operating System User Manual
contains information on how this is done.

3-7

Getting Started
1 720A l nstrument Control ler

System Dependencles

Text Editor

In order to create and maintain source files on the host system, a
general-purpose text editor is required. The Editor Accessory program
(filename ESX) is the recommended editor for use with the 1 720A.

A copy of the Editor Accessory program is included on the program
diskette, and a copy of the Editor U ser Manual is included with the
compiler package.

Disk Space

After using the Editor or Compiler programs, it may be advantageous
to pack the disk contents, using the 1 P option in the 1 720A File U tility
program, to provide as much free disk space as possible. Refer to the
1 720A File Utility U ser Manual if you need help with packing the disk.

The message

?Readj write past physical end of file

means that there was not enough contiguous disk space to create the
output files. Delete any unnecessary files, pack the disk, and try again.

Compilar Organization

3-8

The Compiler program is constructed of overlayed program segments,
sorne of which must be loaded during program execution. Therefore, if
the Compiler program is being used from a floppy disk, the disk must
remain in the disk drive while the program is running. Do not remove
the disk until the program is finished.

If the overlays are not available when needed, the fatal error message

!Unable to load overlay

will be displayed.

FLUKE 1 722A INSTRUMENT CONTROLLER

1 ntroductlon

Getting Started

The following information applies to the 1 722A version of the 90 10A
Language Compiler.

What You Need

The following equipment is needed in order to use the compiler
package:

l . Fluke 9005A or 90IOA Micro-System Troubleshooter with
Option 90 1 OA-00 1 , RS-232-C Interface.

2. Fluke 1 722A Instrument Controller.

3 . Fluke Y1 705 RS-232-C Null Modem Cable and Y 1 707 RS-
232-C Interface Cable.

4. Fluke 90 1 0A-920 90IOA Language Compiler, 1 720Aj 1 722A
Version.

Backlng Up the Program Diskette

The 90 1 OA Language Compiler package consists of this manual and a
write-protected program diskette containing the compiler itself and
various other programs and data files.

Before using the compiler, you should make a copy of the program
diskette. This copy should be used for normal day-to-day operations,
while the original program diskette should be kept in a safe place as a
backup so that the working copy can be resto red if it is ever damaged.

Complete instructions on how to copy diskettes can be found in the
1 722A System Manual.

3-9

Getting Started
1722A l nstrument Control ler

Verlfylng the Worklng Diskette

Once you ha ve created a working copy of the program diskette, you
should verify the integrity of its files by running VERIFY, one of the
programs included in the compiler package. To run the VERIFY
program, type

VERIFY <RETURN>

in response to the 1 722A FDOS prompt.

The VERIFY program checks the contents of the 1 722A System
Device (SYO:) to verify the integrity of the compiler package files. 1t
calculates a checksum for each of the files and compares it to the
checksum contained in the VERIFY.DAT file. VERIFY.DAT is an
ASCII file that contains a list of filenames and checksums for each of
the files in the compiler package.

Results from the VERIFY program are printed in tabular form as each
file is checked. Missing files or checksum errors (that could indicate -
either corrupted files or incorrect version numbers) are reported. If
such problems occur, recopy the diskette and run the VERIFY
program again. If problems persist and yo u are unable to run any of the
programs, contact a Fluke Technical Service Center.

Hooklng Up the System

3-1 0

The 1 722A must be connected to the 90 10A whenever you want to
transfer the hex files produced by the compiler to the 90 10A for
execution.

l . U se an RS-232-C interface cable and an RS-232-C null modem
cable to connect the auxiliary interface of the 90 1 OA to the
serial port on the 1 722A.

2 . Set the RS-232-C auxiliary interface parameters on the rear
panel of the 901 0A. Suggested settings are:

9600 baud (switch setting 7)
Parity: even
Data bits: 8
Stop bits: 1
Parity: on

Getting Started
1722A l nstrument Controller

The 901 0A Setup parameter NEWLINE must be set to
OOOOODOA (the 9010A default value) for transferring files .

3 . Set the parameters of the serial port on the 1 722A to
correspond to those of the 90 10A. The Set Utility program
(SET), a 1 722A system program, is included on the program
diskette for this purpose. Refer to the 1 722A System Manual
for a complete description of how to use the SET utility.

NOTE
The STALL option must be enabled on the 1722A ifanyfiles
are to be transferred from the 9010A to the 1722A. This option
is not required iffiles are on/y transferred from the 1722A to
the 9010A.

The End of Line character should be set to JO and the End of
File character should be set to 26 (the 1722A default values).

The following example demonstrates how the SET utility can
be used to select the parameters that correspond to the above
90 10A settings.

#SET
*KB l : BR 9600 DB 8 PB E SB 1 SI E SO E
*EX

Since the 1 722A serial port parameters must be reestablished
every time the 1 722A is turned on, you will probably want to
incorporate the necessary commands into a system command
file. The 1 722A System Manual contains information on how
this is done.

3-1 1

Getting Started
1 722A lnstrument Control ler

System Dependencles

Text Editor

In order to create and maintain source files on the host system, a
general-purpose text editor is required. The Editor Accessory program
(filename EDIT) is the recommended editor for use with the 1 722A.

A copy of the Editor Accessory program is included on the program
diskette, and instructions for using the editor are included as an
Addendum to this manual.

Disk Space

3-1 2

After using the Editor or Compiler programs, it may be advantageous
to pack the disk contents, using the 1 P option in the 1 722A File Utility
program, to provide as much free disk space as possible. Refer to the
1 722A System Manual if you need help with packing the disk.

The message

?Read 1 write past physical end of file

means that there was not enough contiguous disk space to create the
output files. Delete any unnecessary files, pack the disk, and try again.

Getting Started

IBM PERSONAL COMPUTER

l ntroductlon

The following information applies to the IBM Personal Computer
(PC) version of the 90 10A Language Compiler.

What You Need

The following equipment is needed in order to use the compiler
package:

l. 9005A or 90 10A Micro-System Troubleshooter with Option
90 10A�Ol RS-232 Interface.

2 . IBM Personal Computer (model PC or XT) with:

a. A monochrome or color display.

b. Version 1 . 1 or 2.0 of the IBM DOS Operating System.

c. At least 1 28 K bytes of RAM.

d . A disk drive. We recommend using two disk drives or a
fixed Winchester technology disk drive.

e. An RS-232-C interface.

3 . Fluke Y 1 705 RS-232-C Null Modero Cable and Fluke Y l 707
RS-232-C Interface Cable.

4. Fluke 90 1 0A-923 90 1 0A Language Compiler (IBM PC
version).

3-1 3

Getting Started
I B M Personal Computar

Backing Up the Program Diskette

The 90 1 OA Language Compiler package consists of this manual and a
write-protected program diskette containing the compiler itself and
various other programs and data files.

Before using the compiler, you should make a copy of the write
protected program diskette. This copy is used for normal day-to-day
operations, while the original program diskette should be kept in a safe
place as a backup so that the working copy can be resto red if it is ever
damaged.

Complete instructions on how to copy diskettes can be found in the
IBM Disk Operating System (DOS) User Manual.

Verifying the Working Diskette

3-1 4

Once you ha ve created a working copy of the program diskette, you
should verify the integrity of its files by running VERIFY, one of the
programs included in the compiler package. To run the VERIFY
program, put the working diskette in drive a: and then type

a:VERIFY <RETURN>

in response to the IBM system prompt.

The VERIFY program checks the contents of the copy to verify the
integrity of the compiler package files. lt calculates a checksum for
each of the files and compares it to the checksum contained in the
VERIFY.DAT file. VERIFY.DAT is an ASCII file that contains a list
of filenames and checksums for each of the files in the compiler
package.

Results from the VERIFY program are printed in tabular form as each
file is checked. M issing files or checksum errors (that could indicate
either corrupted files or incorrect version numbers) are reported. lf
such problems occur, recopy the diskette and run the VERIFY
program again. If problems persist and you are unable to run any of the
programs, contact a Fluke Technical Service Center.

Hooklng Up the System

Getting Started
I B M Personal Computer

The IBM PC must be connected to the 90 10A whenever you want to
transfer the hex files produced by the compiler to the 90 l OA for
execution.

l . U se an RS-232 interface cable and an RS-232 null modem
cable to connect the auxiliary interface of the 90 1 OA to a serial
port on the IBM PC.

2. Set the RS-232 auxiliary interface parameters on the rear panel
of the 90 l OA. S uggested settings are:

2400 baud (switch setting 5)
Parity: On
Data bits: 8
Stop bits: 1
Parity: Even

3 . Set the parameters of the serial port on the IBM PC to
correspond to those of the 90 1 0A.

You may use the IBM MODE command to configure the serial
port .

Refer to the IBM instruction manuals for help.

4. The NEWLINE setup parameter should be set to IOOOODOA
for transferring files. lf transmission errors occur, it may be
necessary to change the timing delay to a larger value. See the
90 10A Operator Manual for more information.

5. The 90 10A setup parameters STALL and UNSTALL should
be set to 1 3 and 1 1 respectively (the 90 lOA default values) when
transferring files.

3-1 5

Getting Started
IBM Personal Computer

System Editor

In order to create and maintain source files on the host system, a
general-purpose text editor is required. Any general-purpose editor
may be used with 9010A language source files.

RETURN Key

References to the RETURN key in this manual refers to the

key on the IBM Personal Computers.

3-1 6

CP/M OPERATING SYSTEMS

lntroductlon

Gett ing Started

The following information applies to the version of the 90 10A
Language Compiler for CP j M systems.

CP j M (Control Program for Microcomputers) is a product of Digital
Research, Inc. lt is a general-purpose operating system that runs on a
wide variety of host computers.

What You Need

The following equipment is needed in order to use the compiler
package with a host computer running the CP j M operating system:

l . 9005A or 90 10A Micro-System Troubleshooter with Option
9010A-001 RS-232 Interface

2. CP / M compatible Z80 based host computer system with:

a. At least one eight-inch IBM 3740 format disk drive. We
recommend using two disk drives.

b. Standard CP 1 M Operating System software (version 2.2).

c. An RS-232-C interface.

3 . An RS-232-C Interface Cable suitable for connecting your
host computer system to the 90 10A. For example, use a Fluke
Y 1 709 RS-232-C Interface Cable to connect a Kaypro I I
Personal Computer to a 90 1 0A.

4. Fluke 90 1 0A-92 1 , the version of the 90 1 0A Language
Compiler package for CP j M on eight inch disks, or 90 1 OA-
922, the version for the Kaypro 11 Personal Computer with
CP j M on a 5-1 j4 inch disk.

3-1 7

Getting Started
CP/M Operating Systems

Backing Up the Program Diskette

The 90 1 OA Language Com piler package consists of this manual and a
write-protected program diskette containing the compiler itself and
various other programs and data files.

Befare using the compiler, you should make a copy of the write
protected program diskette. This copy is used for normal day-to-day
operations, while the original program diskette should be kept in a safe
place as a backup so that the working copy can be resto red if it is ever
damaged.

Verlfylng the Worklng Diskette

3-1 8

Once you ha ve created a working copy of the program diskette, you
should verify the integrity of its files by running VERIFY, one of the
programs included in the compiler package. To run the VERIFY
program, type

<VERIFY RETURN>

in response to the CP / M system prompt.

The VERIFY program checks the contents of the copy to verify the
integrity of the compiler package files. It calculates a checksum for
each of the files and compares it to the checksum contained in the
VERIFY.DAT file. VERIFY.DA T is an ASCII file that contains a list
of filenames and checksums for each of the files in the compiler
package.

Results from the VERIFY program are printed in tabular form as each
file is checked. Missing files or checksum errors (that could indicate
either corrupted files or incorrect version numbers) are reported. If
such problems occur, recopy the diskette and run the VERIFY
program again. If problems persist and yo u are unable to run any of the
programs, contact a Fluke Technical Service Center.

--�

Hooking Up the System

Getting Started
CP/M O perating Systems

The host computer must be connected to the 9010A whenever you
want to transfer the hex files produced by the compiler to the 90 l OA for
execution.

l . Use an RS-232 interface cable to connect the auxiliary
interface of the 90 l OA to a serial port on the host computer.

2. Set the RS-232 auxiliary interface parameters on the rear panel
of the 90 1 0A. Suggested settings are:

9600 baud (switch setting 7)
Parity: Even
Data bits: 8
Stop bits: 1
Parity: on

3 . The NEWLINE setup parameter should be set to 10000DOA
for transferring files . If transmission errors occur, it may be
necessary to change the timing delay to a larger value. See the
90 10A Operator Manual for more information.

4. The 90 1 0A setup parameters STALL and UNSTALL should
be set to 1 3 and 1 1 respectively (the 90 10A defaull values) when
transferring files.

5. Set the parameters of the serial port on the host computer to
correspond to those of the 90 1 O A.

Refer to Installing Software in this section for further
information on setting the RS-232 parameters.

3-1 9

Getting Started
CP/M Operating Systems

lnstall lng Software

On CP j M systems, the File Transfer utility program (XFER) uses
information from a data file for configuring RS-232-C transfers. This
file, CONFIG.PRT, is automatically created for each system the first
time that the File Transfer program is used.

The program will prompt for information about RS-232-C port
parameters, and use the information that you enter to create the data
file on the system default disk.

·

Refer to the host computer's instruction manuals if yo u need further
information to answer the prompts.

Once the CONFIG.PRT data file is available on the disk, it will
automatically be used for subsequent file transfers with the XFER
program. This file contains port status and data addresses, an optional
baud rate address, and SIO initialization bytes.

To change the RS-232-C configuration in the CONFIG.PRT file, use
the Configure option (C) in the File Transfer program. The prompts
will be repeated to allow you to redefine the configuration.

Note that the CONFIG.PRT file will be created on the system default
device. The system disk must not be write-protected at this time.

Editor

3-20

In order to create and maintain source files on the host system, a
general-purpose text editor is required. Any general-purpose editor
may be used with 90 10A Language source files.

CONTENTS

Section 4
Writing Programs

Introduction . 4-3
Part 1 : General Program Format . 4-4

Introduction . 4-4
Important Details . 4-5
Program Comments . 4-7
90 10A Programs . 4-8
Address Space Information . 4-8
Setup Information . 4-9
Pod Data Files . 4-1 1
90 10A/ Pod Interaction . 4-1 2
Sample Program . 4-1 3

Part 2: Coding Shortcuts . 4-1 6
Introduction . 4-1 6
Optional Keywords and Keyword Abbreviations 4-1 7
Unary Operator Shorthand . 4-1 8
Default Entries . 4-1 8
File Inclusion . 4-1 9
Sample Program . 4-20

Part 3: Symbolic Names . 4-22
Introduction . 4-22
Symbolic Program Names . 4-24
Symbolic Labels . 4-26
Symbolic Register Names . 4-28
Predefined Register N ames . 4-29
Sample Program . 4-30

4-1 /4-2

Writing Programs

INTRODUCTION

This section provides the information you need to write programs for
the 90 1 OA Language Compiler. The section is divided into three parts.
Each part is self-contained and describes increasingly more advanced
features of the 90 1 OA Language.

The three parts cover the following tapies:

PART 1 : GENERAL PROGRAM
FORMAT

PART 2: CODING SHORTCUTS

PAR T 3: SYMBOLIC NAME

Describes how to write simple
programs using the standard
f e a t u r e s o f t h e 9 0 1 0 A
Language

Introduces sorne extended
fe a t u r e s o f t h e 9 0 1 0 A
Language which reduce the
amount of typing required to
enter programs

Allows programs to be made
more readable and easier to
maintain by using mnemonic
names for programs, labels,
and registers

The best way to learn the 90 1 0A Language is to start by reading
through Part 1 of this section, and then skip directly to Section 5, U sing
the Compiler. Y o u should use the compiler to compile the example
programs provided in Part 1 , and then try writing sorne simple
programs of your own.

Once yo u feel comfortable with the concepts covered in Part 1 , yo u can
return at any time to this section and proceed with the more advanced
concepts covered in the remaining parts . The compiler can be used
productively at any of the three levels.

4-3

Writing Programs

PART 1 : GENERAL PROGRAM FORMAT

lntroductlon

4-4

The 90 1 OA Language Compiler allows yo u to crea te so urce files
identical to those that the 90 10A AUX I/ F functions send via the RS-
232-C auxiliary interface. These files can contain the en tire contents of
the 901 0A memory - not only 90 10A programs but also any available
address space and setup information.

In source files for the 90 10A Language Compiler, address space
information, setup information, and programs are described in
separate blocks. These blocks are identified with compiler keywords,
such as SETUP INFORMATION. This section provides information
about using the various blocks and shows sorne sample source files.

In the 90 1 OA language, program statements use an expanded syntax to
take advantage of the flexibility of the host system text editor and to
provide enhanced readability. Program lines may contain comments
and symbolic names. More information about source files and
program lines is found throughout this section. Section 6, Language
Reference, contains detailed information on the syntax and usage of
each 90 1 OA program statement.

The following is an example of a short source file containing two valid
901 0A programs and no address space or setup information:

PROGRAM O

DPY- THIS /S A N EXAMPLE

EXECUTE PROGRAM 1 0

DPY-OF A VALlO 9010A PROGRAM

PROGRAM 10

REG 1 = 40

0: LABEL O

DEC REG 1

IF REG1 > O G O TO O

lmportant Detalla

Writing Prog rams
General Program Format

When writing programs for the 90 10A Language Compiler on your
computer, you will find that it is necessary to pay attention to sorne
details that you could ignore when entering programs using the 9010A
keyboard. These important rules are:

• Each 90 1 OA statement must be on a separa te line. Continuation
lines are not allowed.

• A statement may begin in any column.

• Spaces and tabs are ignored, except when they occur in DPY or
AUX statements.

• Blank lines are ignored.

• Adjacent keywords, symbolic names (described in Part 3 of this
section), and numbers must be separated by at least one space.

EXAMPLES:

VALID INVALID

READ PROBE READPROBE

DTOG @ 100F9 = 80 BIT 7 DTOG @ 1 00F9 = 80 BIT7

• Uppercase and lowercase characters can be used interchangeably.

EXAMPLE:

The following program statements are all equivalent:

WRITE @ 1 00FA = 1

write @ 1 OOfa = 1

Write @ 1 00FA = 1

4-5

Writing Programs
General Program Format

4-6

• In a few cases, the 90 1 OA Language does not correspond exactly to
the keys that would be pressed if the program were being entered
on the 90 10A keyboard.

For example, INC REG5 is a legal statement accepted by the
compiler. However, the keystrokes used to create this statement on
the 90 10A are INC 5, which would not be accepted by the compiler.

As another example, REGA = REGA INC is a legal statement
accepted by the compiler, but the keystrokes used to create this
statement on the 90 1 0A are REG A INC, which would not be
accepted.

• In general, the keywords of the 90 1 OA Language are not identical
to the wording that appears on the 90 1 0A keyboard.

For example:

KEYBOARD 90 10A LANGUAGE

DISPL DPY

COMPL CPL

RPEAT REPT

TOGGL DATA DTOG

In all cases, however, the keywords accepted by the compiler are
compatible with listings produced by the 90 1 0A through the RS-
232-C auxiliary interface.

A�

Program Comments

Writing Prog rams
General Program Format

The 90 10A Language Compiler allows you to add comments to your
programs, making the programs more readable and easier to maintain.

The rules for using comments are:

• Comments start with an exclamation point (!), and they extend to
the end of the line.

• A comment can be on the same line as a 901 OA statement, or it can
be on a separate line.

• If a comment extends over several lines, each line must begin with
an exclamation point .

• A comment cannot be placed in the middle of a 90 10A statement.

EXAMPLE:

! This example demonstrates the use of comments.

PROGRA M O ! Main program

DPY- THIS /S A N EXAMPLE ! D P Y statements can h a ve comments

EXECUTE PROGRAM 10 ! Execute the de/ay routine

DPY-OF A VALlO 9010A PROGRAM

PROGRAM 10 ! De/ay routine

REG 1 = 40

0: LABEL O

DEC REG 1

! lnitialize R E G 1 with de/ay count

! Count down to zero

IF REG 1 > O G O TO O

4-7

W riti ng Programs
General Program Format

901 0A Programs

The 9010A Language allows programs to be specified in the same form
that would be produced by the 90 10A AUX 1 / F PROGM keys. By
connecting a printer to the auxiliary interface of the 90 10A, you can
obtain formatted listings of your 90 1 OA programs. These listings can
serve as examples of acceptable syntax.

Address Space lnformation

4-8

The 90 lOA Language allows address space information to be specified
in the same form that would be produced by the 90 10A AUX 1 / F
LEARN keys.

The following rules apply to address space information:

• The address space information must appear at the beginning of the
so urce file, preceding all 90 lOA programs (i.e. , befo re the first
PROGRAM statement).

U p to lOO address descriptors may be specified.

E X A M P L E :

! This is a n example o f a source file containing

! U U T memory map information

A DDRESS SPACE INFORMA TI ON

RAM @ COOO-FFFF

ROM @ 0000- 1 FFF SIG 0295

ROM @ 2000-3FFF SIG C262

PRO G RA M O

RAM SHORT

ROM TES T

··�

Setup lnformatlon

Writing Prog rams
General Program Format

The 90 10A Language allows any or all of the setup parameters to be
specified in the same form produced by the 90 10A AUX 1 / F SETUP
keys.

The 90 10A setup functions allow the operator to control the reporting
of UUT errors, enable microprocessor lines, and specify operating
parameters . The 90 1 0A Operator Manual contains complete
information on the various setup parameters that can be specified.

The following rules apply to setup information:

• Setup information must appear at the beginning of the so urce file,
preceding all 90 10A programs (i.e. , before the first PROGRAM
statement). The setup information may appear either before or
after any address space information.

• Yo u can specify all of the setup parameters, sorne of them, or non e
of them. Setup parameters that are not explicitly set assume default
values contained in the pod data file (if a pod data file is specified),
or to the power-up values supplied by the 90 10A.

• Sorne setup information is pod-dependent. The pod-unique
information includes enableable forcing lines, the default bus test
address, and the RUN UUT address. If any of your 90 10A
programs depend u pon the pod-unique features (i.e . , a forcing line
needs to be disabled or a RUN UUT must be performed at the
pod's default address, then the appropriate Pod Data file needs to
be included in the source file. To do this, an INCLUDE statement
is used to specify the correct Pod Data file:

INCLUDE "podname.POD"

This statement must appear befare the setup information in the
source file.

EXAMPLE:

INCLUDE "8086.POD"

4-9

Writing Programs
General Program Format

4-1 0

The INCLUDE statement is described in Part 2 of this section. Pod
data files are described below.

• A POD statement should be placed in the setup section ifany ofthe
programs depend upon pod-unique features.

EXAMPLE:

INCLUDE "8086. POD"

SETUP INFORMA TION

POD - 8086

TRAP A C TIVE FORCE LINE/NO

TRAP A C TIVE INTERRUPT- YES

Writing Programs
General Program Format

Pod Data Fi les

The 90 1 OA Language Compiler program diskette contains a collection
of files with names like 8086.POD, 68000.POD, etc. These files contain
pod-specific definitions for enableable forcing lines, bus test address
(BUSAD R), and RUN UUT address (UUTADR). If you want to
specify any of the pod-specific setup parameters, you should merge the
appropriate pod data file into your source file by using an INCLUDE
statement. The INCLUDE statement must appear befare the SETUP
INFORMA TION section.

Pod-specific forcing lines are defined in the pod data file. The pods
equate each of the forcing lines to a bit in an enable mask.

For example, the definitions for an 8086 pod are shown below:

! Each of the enableab/e forcing lines must be defined as the

! appropriate bit in the enable mask.

FORCELN READY = O

FORCELN HOLD = 1

FORCELN INTR = 3

BUSADR � 0000

UUTADR = FFFFO

! REA D Y is bit O in the enab/e mask

! HOLD is bit 1 in the enab/e mask

! INTR is bit 3 in the enable mask

! BUSADR is the pod's default BUS TEST

address

! UUTADR is the pod's default RUN UUT

address

! Other definitions can follow

4-1 1

Writing Programs
General Program Format

901 0A/Pod lnteraction

4-1 2

Setup information takes effect immediately upon loading a new hex
file into the 90 1 0A (whether through READ TAPE or AUX 1/ F
READ). An interaction takes place between the 90 10A and the
interface pod when the hex file is loaded and setup information may be
changed to the default setting of the pod if:

l . The pod name was not specified with a POD statement in the
setup section, or

2. A different pod is connected to the 90 1 0A while the hex file is
being loaded into the 90 1 0A.

T o avoid changing the parameters in pod-dependent programs:

l . An INCLUDE statement must be used in the setup section of
the source program to include information from the
appropriate Pod Data file.

2. A POD statement must be used in the setup section of the ."""""'
source program to identify which pod is being used.

3. The correct pod (or no pod) must be connected to the 90 10A
when downloading a compiled hex file.

·�.

Sample Program

Writing Programs
General Program Format

The following sample source file illustrates the concepts introduced in
Part l . This example can be u sed as a basis for writing your own 90 l OA
programs. Befare continuing to Part 2, you may wish to copy this
program using your host computer and transfer it to your 90 1 OA as an
exercise.

Section 5, Using the Compiler, shows how to run the compiler and
transfer the generated hex files to the 90 1 0A.

Once you feel comfortable using the compiler at this level, you should
proceed with Part 2, which introduces sorne extended features that
simplify the task of writing larger test programs.

! This program tests the U52 flip-flop on the output side

! of the B255 PIA on the NEC TK-BOA single-board computer.

INCLUDE "BOBO. POD"

SETUP INFORMA TI ON

POD - BOBO

TRAP A C TI VE FORCE LINE-NO

TRAP A C TIVE INTERRUPT- YES

ADDRESS SPACE INFORMA TION

RAM @ BCOO-BFFF

ROM @ 0000-07FF SIG F77C

1!0 @ 100FB-100FA BITS FF

PROGRAM O

WRITE @ 1 00FB = BO

0: LABEL O

REG2 = A

REGB = 1A09

EXECUTE PROGRAM 3

EXECUTE PROGRAM 1

IF REGB = 1 G O TO 1

DPY- TES TING U52#

READ PROBE

! Note: this address space information

! is not actual/y used by the

! program, but the descriptors

! wi/1 be loaded into the 9010A

! Main program

! Configure PIA for output

! Set up entry

! Set up 10 stimulus loops

! Store U52 - pin9 for prompt

! Prompt for probe placement

! Detect probe placement

! Branch on open node

! Display - Testing U52

! Clear probe data register

4-1 3

Writing Programs
General P rogram Format

4-1 4

2: LABEL 2

WR/TE @ 1 00FA = 1

D TO G @ 100F9 = 80 BIT 7

WRITE @ 1 00FA = O

D TOG @ 100F9 = 80 BIT 7

DEC REG2

IF REG2 > O G O TO 2

EXECUTE PROGRAM 2

IF REG8 = A G O TO 3

DPY-U52 TOGGLING IMPROPERL Y#

G O T0 4

1: LABEL 1

DPY-WAS PROBE IN PLACE# ?1

IF REG1 = O G O TO O

DPY-U52 OPEN#

G O T0 4

3: LABEL 3

DPY-U52 TES T PASSED#

4: LABEL 4

PROGRAM 1

SYNC FREE-RUN

0: LABEL O

REG 1 = 50

REG2 = 20

1: LABEL 1

READ PROBE

IF REGO ANO 5000000 > O G O TO 2

DEC REG 1

IF REG 1 > O G O TO 1

REG8 = 1

G O T0 3

2: LABEL 2

DEC REG2

READ PROBE

IF REGO ANO 5000000 = O G O TO O

IF REG2 > O G O TO 2

REG8 = O

3: LABEL 3

! Stimu/us loop

! Set f/ip flop D input high

! Toggle flip flop

! Set f/ip flop D input low

! Toggle again

! Loop for 10 tries

! Extract probe data

! Branch on probe count = 10

! Display bad toggle

! Exit

! Open node loop

! Query

! Branch if probe not ready

! Display - U52 bad

! Exit

! Device passed

! End

! Program to detect probe placement

! Set counts

! Open count = 50

! Debounce count =20

! Open loop

! Gather leve/ information

! Branch on bounce leve/

! Decrement open count

! Loop if count > O

! Set Open Node flag

! Exit

! Debounce loop

! Decrement debounce count

! Gather leve/ information again

! Branch on open leve/

! Loop if count > O

! Set Begin Test flag

! End

Writing Programs
General Program Format

PROGRAM 2 ! Program to extract the probe data

REAO PROBE ! Gather probe information

REGB = REGO A NO 7F ! Extract count

REG9 = REGO SHR SHR SHR SHR SHR SHR SHR SHR ANO FFFF ! Extract Sig.

REGA = REGO SHR SHR SHR SHR SHR SHR SHR SHR

REGA = REGA SHR SHR SHR SHR SHR SHR SHR SHR

REGA = REGA SHR SHR SHR SHR SHR SHR SHR SHR ANO 7 ! Extract leve/

PROGRAM 3 ! Program to prompt the operator

REG2 = REGB ANO 7F ! Register 2 = pin number

REG 1 = REGB SHR SHR SHR SHR SHR SHR SHR ANO 7F ! R1 = Oevice num.

OPY-PROBE U@ 1 PIN @2# ! Prompt for probe placement

4-1 5

Writing Programs

PART 2: COD ING SHORTCUTS

lntroductlon

4-1 6

The 901 0A Language is designed to be compatible with the formatted
listings produced by the AUX 1 / F keys on the 90 10A. In this format,
you may find that sorne statements require much more typing than
would be required to en ter the same statement through the 90 l OA
keyboard.

To make it easier to enter large programs on the host system, the 90 l OA
Language Compiler provides several features which reduce the
amount of typing required. These features are:

• Optional Keywords and Keyword Abbreviations

• Unary Operator Shorthand

• Default Entries

• File lnclusion

Writing Prog rams
Coding Shortcuts

Optional Keywords and Keyword Abbreviatlons

The 90 10A Language provides the option of abbreviating certain
keywords or leaving them out entirely. Appendix C, Optional
Keywords and Keyword Abbreviations, contains a complete list of the
optional keywords and valid abbreviations. Furthermore, the syntax
diagrams in Section 6, Language Reference, indicate the abbreviated
forro of each statement in the language.

EXAMPLES:

STA TEMENT ABBREVIA TED FORM

EXECUTE PROGRAM 5 EXECUTE 5

or

EX 5

WRITE @ lOOFF = 25 WRITE l OOFF = 25

or

WR l OOFF = 25

3: LABEL 3 3 :

SYNC ADDRESS SYNC A

or

3: SYNC A

4-1 7

Writing Programs
Coding Shortcuts

Unary Operator Shorthand

For multiple applications of a unary operator (INC, DEC, CPL, SHL,
or S H R), you may specify the unary operator followed by a decimal
number indicating how many times it is to be applied.

EXAMPLE:

statement

REG 1 = REGO SHR SHR SHR SHR SHR SHR SHR ANO 7F

be abbreviated to

REG 1 = REGO SHR 7 ANO 7F

Default Entrles

4-1 8

When programs are created through the 90 l OA keyboard, many of the
en tries in a program step can be defaulted to the appropriate dedicated
register by pressing the ENTER key. A"""'

For example, to create the statement READ @ REGF, you need only
press the READ and ENTER keys on the 90 10A. The read address
automatically defaults to REGF.

Similarly, if the WRITE and ENTER keys are pressed on the 90 10A,
the write address automatically defaults to REGF, and the data to be
written defaults to REGE.

The 90 l OA Language provides a similar default capability. Y o u can
use an asterisk (*) to indicate that an entry should default to a
dedicated register. The syntax diagrams in Section 6, Language
Reference, indicate which entries can be defaulted in this way.

EXAMPLES:

STATEMENT DEFAULT FORM

READ REGF READ *

WRITE REGF = REGE WRITE * = *

File lncluslon

Writi ng Prog rams
Coding Shortcuts

To facilitate handling large collections of source code which can be
shared by severa! programs, the 90 lOA compiler provides a file
inclusion feature. This feature allows yo u to crea te a library of useful
90 1 OA programs and use the file inclusion facility to merge them into a
particular source file.

A line of the form

INCLUDE "filename"

in the source file will be replaced by the contents of the file "filename"
when the program is compiled. The effect is equivalent to manually
entering the contents of the included file at that point in the so urce file.

EXAMPLE:

Assuming that the file PROMPT.S contains

PROGRA M 3

REG2 = REGB ANO 7F

REG 1 = REGB SHR 7 ANO 7F

OPY-PROBE U@ 1 PIN @2#

then the source file

PROGRA M O

REGB = 1A09

EXECU TE PROGRAM 3

JNCLUOE "PROMPT. S "

have exactly the same effect as the source file

PROGRA M O

REGB = 1A09

EXECUTE PROGRA M 3

PROGRAM 3

REG2 = REGB ANO 7F

REG 1 = REGB SHR 7 A NO 7F

OPY-PROBE U@1 PIN @2#

4-19

Writing Prog rams
Coding Shortcuts

Sample Program

4-20

The following example is similar to the one given at the end of Part 1 ,
but it takes full advantage of the abbreviation features. The example
assumes that the file PROBEl .S contains the code for PROGRAM 1 ,
PROBE2 .S contains P ROGRAM 2 , and PROMPT.S contains
PROGRAM 3 .

! This program tests the U52 flip-flop o n the output side

! of the 8255 PIA on the NEC TK-80A single-board computer.

INCLUDE "8080.POD"

SETUP

POD - 8080

TRAP A C TI VE FORCE LINE NO

TRAP A C TIVE INTERRUPT YES

ADDRESS SPA CE

RAM 8C00-8FFF

ROM 0000-07FF SIG F77C

1/0 100F8- 100FA BITS FF

PROGRAM O

WR 100FB = 80

0: REG2 = A

REG8 = 1A09

OEX 3

EX 1

IF REG8 = 1 G O TO 1

DPY TES TING U52#

PROBE

2: WR 1 00FA = 1

DTOG 1 00F9 = 80 BIT 7

WR 100FA = O

D TOG 100F9 = 80 BIT 7

DEC REG2

IF REG2 > O G O TO 2

EX 2

IF REG8 = A G O TO 3

! Equivalent to SETUP INFORMA TION

! - in SETUP statements is optional

! @ omitted

! WRITE abbreviated to WR

! Same as EXECUTE PROGRAM 3

! Short form of LABEL statement

DPY U52 TOGGL/NG IMPROPERL Y# ! - is optional in DPY statement

G O T0 4

1: DPY WAS PROBE IN PLA CE# ?1

IF REG1 = O G O TO O

DPY U52 OPEN#

G O T0 4

3: DPY U52 TES T PASSED#

4:

INCLUDE "PROBE1.S"

INCLUDE "PROBE2.S"

INCLUDE "PROMPT.S"

Writing Prog rams
Coding Shortcuts

! Coda for PROGRAM 1 is insertad he re

! PROGRAM 2

! PROGRAM 3

4-21

Writing Programs

PART 3: SYMBOLIC NAMES

l ntroductlon

4-22

The 90 1 0A Language allows programs, labels, and registers to be
referred to by symbolic names. For example, the statement

EXECUTE P ROGRAM 5

could be replaced by something more meaningful, such as

EXECUTE P ROGRAM DELA Y

Symbolic names can contribute greatly to the readability of programs,
allowing the programs to be self-documenting to a large degree.

The following rules apply to symbolic names:

• Symbolic names must begin with a letter, and they can contain any
number of letters, digits, and underscore characters (_) .

• Only the first eight characters of a name are significant. For
example, TESTMENU 1 AND TESTMENU2 are treated as
identical names.

• 90 1 0A Language keywords , such as LOOP, READ and
PROGRAM, cannot be used as symbolic names. For example,
although LOOP cannot be used as a symbolic label name, LOO P I
i s acceptable.

• Appendix A contains a complete list of the 90 10A Language
keywords. Using a keyword as a symbolic name causes the
compiler to issue a SYNT AX ERROR message.

• Symbolic names must contain at least one letter other than A, B, C,
D, E, or F so that they can be distinguished from hexadecimal
constants. This means that words like BAD, ACE, or F ADE
cannot be used as symbolic names because the compiler will
interpret them as hex constants. U sing a hex constant as a symbolic
name causes the compiler to issue a SYNT AX ERROR message.

Writing Programs
Symbol ic Names

• Symbolic names can be used anywhere that the corresponding
actual program number, register number, or label number can
occur in a 90 1 0A program.

Forward references are permissable for program names and label
names. In other words, an EXECUTE or GOTO statement using a
symbolic name is allowed to appear either before or after
corresponding PROGRAM or LABEL statements.

Register names may appear in DPY and AUX statements .

• Symbolic names are case-insensitive. For example, a name can be
declared in uppercase and referenced in lowercase, and names ca:t
be a mixture of uppercase and lowercase letters.

4-23

Writing Programs
Sym bol ic Names

Symbollc Program Names

4-24

901 0A Language allows programs to be referred to by name as well as
by number. By choosing descriptive program names, you can make
your programs much more readable and maintainable.

Symbolic program names do not need to be declared explicitly. Simply
using a name in a PROGRAM statement or in an EXECUTE
statement is sufficient to define that symbolic program name.

The compiler assigns sequential program numbers to symbolically
named programs, starting with PROGRAM O for the first program in
the source file. Each time a symbolic PROGRAM statement is
encountered, the next sequential program number is assigned to it. A
source file can contain any combination of programs with actual
program numbers and programs with symbolic names.

NOTE
EXEC VTE statements can appear either before or after the
PROGRAM statement. They do not have any effect on the
sequence of program numbers assigned to symbolic program
names.

Whenever the compiler encounters a program in the so urce file with an
actual program number rather than a symbolic name, then subsequent
symbolic program names are assigned program numbers that follow
sequentially from the given program number.

EXAMPLE:

PROGRAM 5 ! Compiled as PROGRAM 5

PROGRAM PA ! Compiled as PROGRAM 6

PROGRAM PB ! Compiled as PROGRAM 7

PROGRAM 20 ! Compiled as PROGRAM 20

PROGRAM PC ! Compiled as PROGRAM 2 1

Writing Programs
Symbol ic Names

The following rules apply whenever a source file contains programs
with actual program numbers:

• Programs with actual program numbers must be in numeric order
in the source file. For example, PROGRAM 5 must precede
PROGRAM 20.

• There must be a large enough gap between two programs with
actual program numbers for any intervening programs with
symbolic names. For example, if the source file contains a
PROG RAM 8 and a PROG RAM 1 1 , PROG RAM 8 must precede
PROGRAM 1 1 and there can be at most two symbolically-named
programs between them.

EXAMPLE:

! This example demonstrates the use of symbolic program names

! The compilar wi/1 assign PROGRA M O to MAIN and

! PROGRAM 1 to DELA Y

PROGRAM MAIN

DPY-TH/S /S AN EXAMPLE

EXECUTE DELA Y

DPY-OF A VALlO 9010A PROGRAM

PROGRAM DELA Y

REG 1 = 40

0: DEC REG 1

IF REG 1 > O G O TO O

4-25

Writing Programs
Symbol ic Names

Symbollc Labels

4-26

The symbolic label feature allows you to refer to a branching location
with a mnemonic name, providing the same advantages as symbolic
program names.

The following rules apply to symbolic labels:

• Symbolic label names are not declared explicitly. Simply using a
name as the target of a GOTO or in a LABEL statement is
sufficient to define a symbolic label name.

• Within a single program, symbolic label names cannot be mixed
with hexadecimal label numbers. A source file may contain a
m'xture of hexadecimal and symbolic labels, but within a given
program all labels must be either hexadecimal or symbolic.

• Symbolic labels are local to the program in which they appear. This
means that it is possible to have duplicate label names in different
programs without conflict.

• Each program is limited to 1 6 label definitions, even if the labels are
referred to symbolically.

• Within a given program, the compiler assigns hexadecimal labels
to symbolic label names sequentially, starting at O. The assignment
is made upon the first appearance of the label, whether it is a
LABEL statement or the target of a GOTO statement.

EXAMPLE:

PROGRAM FINO

SEARCH:

READ @ REG 1

INC REG 1

/F REGE = REG3 G O TO FOUND

Writing Programs
Symbol ic Names

! Label O wi/1 be assigned to SEARCH

! Label 1 wi/1 be assigned to FOUND

IF REG 1 > REG2 G O TO NO TFOUND ! La b e / 2 w i / 1 be a s s i g n e d t o

NO TFOUND

G O TO SEARCH

NO TFOUND:

FOUND:

4-27

Writin g Programs
Symbol ic Names

Symbollc Reglster Names

4-28

Another way to enhance program readability is to use symbolic names
for registers. The usage of the various 90 lOA registers can be made
clear by choosing appropriate symbolic names.

Symbolic re gis ter names are a bit more complex than program or label
names. For example, register names must be explicitly declared in a
DECLARATIONS section. Another difference is that register names
can be either local to a single program or global to the en tire source file,
depending on how they are declared.

Symbolic register names must be declared in an ASSIGN statement of
the forro

ASSIGN REGn TO name

ASSIGN statements are collected together into a DECLARA TIONS
section.

EXAMPLE:

DECLARA TIONS

ASSIGN REG 1 TO ERRCNT

ASSIGN REG2 TO FREO

lf the register names are to be used only within a particular program,
then the DECLARA TI ONS section should appear between the
PROGRAM statement and the body of the program itself. If the
declarations are for global registers that are shared among severa!
programs, then the DECLARA TI ONS section must appear at the
beginning of the source file before the first PROGRAM statement.

lt is possible to assign severa! symbolic names to the same register
within a program. This can be done by specifying a list of names in a
single ASSIGN statement or by using multiple ASSIGN statements . lt
should be noted, however, that using multiple names for the same
register (implying multiple uses for a register) can lead to programming
errors. lt is the programmer's responsibility to ensure the integrity of
the register contents.

··�.

··�

EXAMPLE:

PROGRAM UUTTES T

DECLARA TIONS

ASSIGN REG 1 TO ERRCNT

ASSIGN REG2 TO PINCNT,SETBIT

ASS/GN REG6 TO MASK

ERRCN T = O

SETBIT = 4

MASK = SETBIT CPL ANO FF

WRITE @ REG3 = MASK

Predeflned Reglster Names

Writing Programs
Symbolic Names

! REG 1 wi/1 be usad when ERRCNT is

! referred ta

! Bath PINCNT and SETBIT wi/1 be

! al/acatad ta REG2

! TEMP wi/1 alsa be al/acatad ta REG2

! MASK wi/1 be al/acatad ta REG6

! Actual/y sets REG 1 = O

! Since PINCNT, TEMP, and SETBIT al/

! share the sama register, this

! statement has the effect af alsa

! setting PINCNT and TEMP

Symbolic names have been predefined for each of the dedicated
registers. These names can be used anywhere in a program that a
register reference can be made. lt is not necessary to declare these
symbolic register names.

The predefined register names and their functions are as follows:

DEDICATED SYMBOLIC FUNCTION
REGISTER NAME

A BITMASK Bit Mask
B ROMSIG ROM Signature
e STSCTL STS / CTL lnformation
D BITNUM Bit Number
E DAT Data
F ADR Address
o PBDAT Read Probe Data

4-29

Writi n g Programs
Symbol ic Names

Sample Program

4-30

The following example is similar to the one given at the end of Part 2.
The example assumes that PROGRAM 1 contained in the file
P ROBEI .S has been renamed to PRBPLACE, PROGRAM 2 (in
PROBE2.S) has been renamed to PROGRAM UNPACK, and
PROGRAM 3 (in PROMPT.S) has been renamed to PROGRAM
PROMPT.

! This program tests the U52 f/ip-flop on the output sida

! of the 8255 PIA on the NEC TK-80A single-board computar.

! This version of the program demonstrates

! the use of symbolic names.

INCLUDE "8080.POD"

SETUP

POD - 8080

TRAP A C TIVE FORCE LINE NO

TRAP A C TIVE INTERRUPT YES

ADDRESS SPA CE

RAM 8C00-8FFF

ROM 0000-07FF SIG F77C

1!0 100F8- 100FA BITS FF

DECLARA TIONS

ASSIGN REG8 TO LOAD

ASSIGN REG8 TO FLA G

ASSIGN REG8 TO COUNT

PROGRAM U52TES T

DECLARA TIONS

ASSIGN REG2 TO CNT

WR @ 1 00FB = 80

! Global register declarations

! Usad in display message

! Flag an output from proba placement

! Count an output from unpacker

! Local declarations

! Beginning of program body

S TA R T:

CNT = A

LOAD = 1A09

EX PROMPT

EX PRBPLA CE

IF FLA G = 1 GOTO OPEN

DPY TESTING U52#

PRO BE

S TIMULUS:

WR @ 1 00FA = 1

D TOG @ 100F9 = 80 BIT 7

WR @ 1 00FA = O

D TOG @ 100F9 = 80 BIT 7

DEC CNT

IF CNT > O G OTO S T/MULUS

EX UNPA CK

IF COUNT = A G O TO DONE

DPY U52 TOGGLING /MPROPERL Y#

G O TO EXI T

OPEN:

DPY WAS PROBE IN PLA CE# ?1

IF REG 1 = O GOTO S TART

DPY U52 OPEN#

G OTO EXIT

DONE:

DPY U52 TEST PASSED#

EXIT:

INCLUDE "PROBE1.S"

INCLUDE "PROBE2.S"

INCLUDE "PROMPT. S "

Writing P rograms
Symbol ic Names

! Symbolic program reference

! Symbolic /abe/ definition

! Symbolic /abe/ reference

! End of main program

! PROGRAM 1 must be renamed to

PROGRAM

! PRBPLA CE in file PROBE1.S

! PROGRAM 2 renamed to PROGRAM

UNPA CK

! in file PROBE2.S

! PROGRAM 3 renamed to PROGRAM

PROMPT

! in file PROMPT.S

4-31 /4-32

CONTENTS

Section 5
U sing the Compiler

Introduction . 5-3
Preparing the Source File . 5-4
Compiling . 5-5

lnteractive Mode . 5-6
Command Line Mode . 5-8
Listing File Options . 5-10
Syntax Errors . 5-1 1

Transferring Programs . 5-1 2
Transferring Programs to the 90 1 0A 5-1 2
Transferring Programs from the 90 10A 5-14
Source Format . 5-14
Hex Format . 5-16

5-1 /5-2

Usi n g the Compi lar

INTRODUCTION

This section provides the information needed to use the 9010A
Language Compiler (9LC) and the File Transfer Utility program
(XFER). The following topics are covered in this section:

• Preparing the Source File

• Compiling

• Transferring Programs

5-3

Using the Compilar

PREPARING THE SOURCE FILE

5-4

The first step in using the compiler is to crea te a so urce file containing
the desired 901 0A programs. The source file may use all the language
features introduced in Section 4, Writing Programs. For detailed
information on specific statements, see Section 6, Language
Reference.

To edit and modify the source files, you should use the text editor that
you normally use on your host computer system.

By convention, the names of source files are usually given a filename
extension of .S, but this is not required by the compiler. PIA.S is an
example of a typical source file name.

If the source file is not contained on a system default device the
filename may also require a device name. For example:

M F l :DEMO.S

might specify a source file named DEMO.S on an optional floppy disk
(MFl). Consult your host computer user's manuals for information
about complete filename specifications .

The program diskette contains a sample source file named DEMO.S.
This file is used as an example in the following procedures for using the
compiler.

lf you already ha ve 90 1 0A programs stored on 90 1 0A cassette tapes, it
is possible to transfer them to your host system and use them with the
compiler. The procedure for doing this is described la ter in this section
under the heading Transferring Programs from the 90 10A.

Using the Compiler

COMPILING

Once yo u ha ve created a so urce file, you are ready to run the compiler.
The compiler reads the source file and creates an equivalent hex file
which can then be transferred to the 901 0A through the RS-232-C
serial interface.

Y ou ha ve the option of running the compiler in either of two modes:
the interactive mode or the command line mode.

NOTE
The following examples require the file DEMO. S to be on a
non write-protected disk. Ifyour working copy of the system
disk (as described in Section 3) is write-protected, yo u will need
to use two disk drives, with a copy of the demo program
DEMO. S on a non write-protected disk in the second drive.

5-5

Using the Compi ler
Compi l ing

lnteractlve Mode

5-6

If yo u run the compiler in the interactive mode, it prompts yo u for the
names of the source and hex files . The compiler asks you whether you
want a listing file prod uced. If yo u answer y es, the compiler asks for the
name of the listing file and the specific listing file options desired.

T o run the compiler in the interactive mode, simply en ter the command

[device]9LC <RETURN>

NOTE
The use of {device] in the examples in this section refers to an
optional device name specification that m ay be required for
files that are not on a system default device.

<RETURN) indicates the key that is pressed to termínate the
command line.

After you have entered the filename command 9LC, the compiler
responds by displaying its version number and copyright notice. The
compiler then asks for the name of the so urce file. Y ou now en ter the
name of the source file, for example:

[device]DEMO.S <RETURN>

N ext, yo u are prompted for the name of the hex file to be created by the
compiler. En ter the name of the hex file followed by RETURN. If yo u
simply press RETURN, the compiler genera tes a hex file with the same
name as the source file, but with a .H extension appended to the root of
the source file name. In this example, the hex file name becomes
DEMO.H on the same device as DEMO.S.

<RETURN>

The compiler then asks you whether you want a listing of the source
program. You should respond by entering Y (yes) or N (no) . For this
example, enter

Y <RETURN>

Using the Compi lar
Compi l ing

lf yo u request a listing file, the compiler prompts yo u for the listing file
name. Y ou should enter the required name, or simply press RETURN
to get the same name as the source file with a .L extension, in this case
DEMO.L (also on the same device as DEMO.S).

<RETURN>

After yo u ha ve specified the listing file name, the compiler displays the
listing file options. These options are described later in this section. If
yo u simply press RETURN, the compiler produces a copy of the
source file with line numbers added.

< RETURN>

At this point, you have specified the compiler options. The compiler
displays the equivalent command line (the significance of which is
explained below) and then proceeds to compile the source file.

While it is processing the source file, the compiler displays the name of
each program, its program number, and the number of bytes of90 10A
program memory required. After the compiler has processed the
source files, it displays the total number of bytes required and then
returns to the host operating system.

lf the compiler detects any errors in the source file, it displays an
appropriate error message along with the source line containing the
error. The error message also appears in the listing file if a listing file
has been requested. If the source file contains any errors, then a hex file
will not be created.

5-7

Usi ng the Compi lar
Compi l ing

Command Line Mode

An alternative way of running the compiler is to specify all the desired
options directly on the command line. If any options are specified on
the command line, then the prompting described above is completely
bypassed.

To run the compiler in the command line mode, you enter a command
in the following format:

[deviceJ 9LC [- l i stopt ions] [- H hexfile] [- L [l i stfile]] srcfi le < RETU R N >

5-8

In the above notation, items within brackets [] are optional.

Srcfile is the name of the so urce file to be processed by the compiler. lt
may require an optional device name specification.

The -H option is used to override the default hex file name (.H
extension). Hexfile is the desired name of the hex file produced by the
compiler.

The -L option is used to override the default listing file name (.L
extension). Listfile is the desired name of the listing file produced by
the compiler.

The -L option without a listing file name can be used to produce a
listing file in the case where no listing options are specified. The listing
file is generated with the .L extension.

The -listoptions allow you to specify the form of the listing file. The
listing file options and their functions are:

1 Expand lnclude Files

S Replace Symbolic Names

D Replace Default Entries

A Expand Keyword Abbreviations

··�

Using the Compilar
Compi l ing

Specifying any of the options I ,S,D, or A causes a listing file to be
produced. The paragraphs following the next heading, Listing File
Options, contain more information regarding these options.

The following examples illustrate the use of the command line mode.

The command

9LC -L [device]DEMO.S <RETURN>

produces exactly the same results as the sequence of options described
above under the heading Interactive Mode.

To compile the source file DEMO.S and produce a hex file named
DEMO.H but not produce a listing file, use the following command:

9LC [device]DEMO.S <RETURN>

To produce a listing file with include files expanded, use the following
command:

9LC -I [device]DEMO.S <RETURN>

5-9

Using the Compi le r
Compi l ing

Llstlng File Options

5-1 0

The compiler provides a number of different listing file options. These
options are described below.

• I Expand Include Files

If the source file contains an INCLUDE statement, such as

INCLUDE "6802.POD"

the listing file normally just copies this statement. However, if the
- I option is specified, then the listing file also shows the contents
of the file 6802.POD.

• S Replace Symbolic Names

If the source file contains symbolic names for registers , programs,
or labels, they are normally copied to the listing file as they appear
in the source file. However, if the -S option is specified, then the
symbolic names are replaced by the actual program number,
register number, or label number.

EXAMPLE:

lines from source file:

normal listing file:

listing file with -S option:

EXECUTE DELA Y

INC ERRCNT

EXECUTE DELAY

INC ERRCNT

EXECUTE 7

INC REG2

• D Replace Default Entries

Using the Compilar
Compi l ing

If the source file contains any default entries (indicated by *), the
listing file normally copies the statement as it appears in the so urce
file with the * in place. However, if the -D option is specified, then
the listing file substitutes the appropriate default register for the * .

EXAMPLE:

line from source file: WRITE @ * = *

normal listing file: WRITE @ * = *

listing file with -D option: WRITE @ REGF = REGE

• A Expand Keyword Abbreviations

If the source file contains the abbreviations RD, WR, or EX, they
are normally copied to the listing file in their abbreviated form,just
as they appear in the source file. However, if the -A option is
specified, then the listing file replaces all occurrences of these
abbreviated keywords with the full keyword.

EXAMPLE:

line from source file:

normal listing file:

listing file with -A option:

Syntax Errors

EX PROGRAM 5

EX PROGRAM 5

EXECUTE PROGRAM 5

All programmers eventually have an elusive syntax error to track
down. The compiler provides sorne help by pinpointing the location of
the syntax error in the listing file, especially if the listing option has
been selected to expand any include files.

Even after you have found the location of the syntax error, the exact
cause of the problem may not be obvious. Appendix F, Error
Messages, contains a list of common syntax errors that can be used as a
time-saving checklist.

5-1 1

Using the Com pilar

TRANSFERRING PROGRAMS

Once you have successfully compiled your programs, you are ready to
transfer the generated hex file to the 90 1 0A through the RS-232-C
serial interface. XFER, the File Transfer Utility program, is provided
on the program diskette for this purpose.

Before running XFER, the 901 0A must be connected to the serial port
of the host system as described in Section 3, Getting Started.

T o run XFER, simply en ter the command

[device]XFER <RETURN>

After yo u ha ve entered the command XFER, the program responds by
displaying its version number and copyright notice, followed by a main
menu of file transfer options:

T Transfer hex file from host to 90 10A
S Transfer so urce files from 90 l OA to host
H Transfer hex files from 9010A to host
C Configure host system
Q Quit

Whenever this menu is displayed, you can return to the host operating
system by entering

Q <RETURN>

Y o u can also use the Q command to return to this main menu when
prompted for a filename in any of the other options in this menu.

Y o u should select the C option if yo u want to change the default setting
for the RS-232-C serial port. Refer to Section 3, Getting Started, for
further information on configuring the serial port.

Transferring Programs to the 901 OA

5-1 2

To transfer a file from the host system to the 90 10A, you should select
the T option. Since this is the default option, you may simply press the
RETURN key.

<RETURN> ··�

Using the Compiler
Transferring Programs

Y ou are then asked to en ter the name of the hex file to be transferred.
To transfer DEMO. H , the file produced by compiling DEMO.S in the
previous examples, enter

[device]DEMO. H <RETURN>

XFER then instructs yo u to prepare the 90 1 OA for reading by pressing
the AUX 1/ F, READ, and YES keys on the 90 10A. As soon as you
have pressed the YES key, the host system starts transferring the hex
file to the 90 10A.

NOTE
Pressing the A UX 1/ F and READ keys causes the 9010A to
clear its program memory and reset al/ the setup parameters to
their default va/ues. A ny pt ograms currently in the 9010A
memory are lost.

When the file transfer is complete, the 90 10A displays the message
AUX-RECEIVING - COMPLETE, and the host system again
displays the file transfer options menu. To exit from XFER and return
to the host operating system, enter

Q <RETURN>

The test programs can now be executed on the 90 1 0A just like any
other 90 10A programs. Once the transfer is complete, the 90 10A may
be disconnected from the host system.

lf you have followed the example above to compile DEMO.S and
transfer DEMO.H to the 90 10A, you can execute the program on the
90 10A by pressing the following keys:

EXECUTE O ENTER

lf your source file contains symbolic program names, you must
determine which actual program numbers were assigned by the
compiler to the symbolic program names. F or this reason, the compiler
displays the program names and their corresponding program
numbers as it processes the source file.

5-1 3

Using the Compiler
Transferring P rograms

Transferrlng Programs from the 901 0A

Programs that are transferred from the 90 l OA to the host system can
be stored either in source format or in hex format. lf you have
programs saved on 90 lOA cassettes and yo u want to modify them on
the host system and take advantage of the features of the 90 1 OA
Language Compiler, then the programs must be stored in source
forma t.

Hex format is useful if you simply want to store the 90 1 0A programs
on the host system and load them back into the 90 l OA at a la ter time
without any modifications.

Source Format

5-1 4

To save programs from the 90 1 OA on the host system in so urce format,
select the S option from the file transfer options menu by entering

S <RETURN >

NOTE
The fol/owing examp/es assume that you have transferred the
programs in DEMO.H from the host system to the 90JOA, as
previously described under Transferring Programs to the
9010A.

XFER asks yo u for the na me of the so urce file to be created on the host
system. Respond by entering the source file name, in this case,

[device]DEM O l .S <RETURN>

XFER then instructs yo u to prepare the 90 l OA for writing by pressing
the AUX 1/ F and WRITE keys on the 90 10A. When the transfer is
complete, the 90 1 0A displays the message

AUX-SENDING - COMPLETE

A menu of source options will now be displayed:

E - Save the entire file
S - Save the setup information
A - Save the address descriptors
P - Save all programs
0-99 - Save the specified program
R - Return to the main menu

Using the Compi lar
Transferring Programs

If you choose to save the entire file, then setup information, address
d�scriptors, and all programs will be saved.

If you choose to save the setup information or the entire file, XFER
then prompts for the name ofa pod data file, since the 90 10A Language
Compiler requires that a pod data file be included before any pod
dependent setup information. For the present example, enter

[device]Z80.POD <RETURN>

In this case, XFER inserts a statement of the form INCLUDE
"Z80. POD" immediately before the S ETUP INFOR M A TION
statement in the source file on the host system.

If, for sorne reason, you do not want to specify a pod data file, simply
en ter <RETURN> when prompted for the na me of a pod data file. N o
INCLUDE statement will be inserted into the source file.

If yo u choose to save the address descriptors and none exist, a warning
message will be displayed.

Y o u ha ve the option of saving individual programs or all of the 90 1 OA
programs in a single operation. If you attempt to save a program that
does not exist, a warning message will be issued.

NOTE
The compiler requires setup and address space information to
appear befo re any programs. Therefore, setup or address space
information should be saved before any programs. lf you
attempt to save setup information or address descriptors after
programs, the XFER program will print an error message.

At the end of the entire file transfer process, the new source file (in this
case, DEMO l .S) exists on the host system. Y o u can use the R option to
return to the file transfer options menu.

The source file created by the file transfer utility can be modified using
a text editor on the host system. For example, you may want to add
comments or change the program numbers to symbolic names. The
modified source file can be compiled, and the resulting hex file can be
transferred back to the 90 10A.

5-1 5

Using the Compiler
Transferring Programs

Hex Formal

Hex format files are not generally modified on the host system, and
they cannot be processed by the 90 1 OA Language Compiler. The only
reason for transferring files in hex format is to store the programs so
that they can be loaded back into the 90 1 OA at a la ter time.

T o select the hex format, en ter

H <RETURN>

in response to the file transfer option menu.

XFER prompts you for the name of the hex file to be creatt:d . For
example, you could enter

[device]DEMO l . H <RETURN>

You are then instructed to press the AUX 1/ F and WRITE keys on the
90 10A. When the transfer is complete, the 90 10A displays the message

-

AUX
f
. -SEND

f
iNG - <;üMPLETE, and the file transfer utility returns to �¡

the tle trans er optwn menu.

5-1 6

CONTENTS

Section 6
Language Reference

Introduction . 6-3
Syntax Diagram N otation . 6-4
Special Symbols . 6-5
Symbolic Names . 6-6
Expressions . 6-8
Addresses . 6-1 O
General Information . 6-1 1
Statement Format . 6-1 1
Program Comments . 6-1 1
File Inclusion . 6-1 2

SOURCE FILE SYNTAX . 6-1 3
Source File . 6-1 5
Setup . 6-1 7
Address Space Declaration . 6-1 9
Address Descriptor . 6-2 1
Global Declaration . 6-23
Symbolic Register Name Declaration . 6-25
90 1 OA Program . 6-27
Program Body . 6-29
Local Declaration . 6-3 1
Binary Program . 6-33
Include Directive . 6-35

SETUP PARAMETERS . 6-37

901 0A PROGRAM STATEMENTS 6-61

6-1 /6-2

Language Reference

INTRODUCTION

This section pro vides a quick reference for 90 1 OA Language syntax. As
an aid to quick reference, the information contained here is concise.
For an introduction to the language as a whole, see Section 4, Writing
Programs.

This section is organized as follows:

• General lnformation
• Source File Syntax
• Setup Parameters
• 901 0A Program Statements

Program statements are introduced with a syntax diagram that
illustrates the legitimate construction. A complete definition of the
various forms of the statement follow the syntax diagram. The
statement definitions use the format shown in the following example
page.

STATEMENT NAM E

Syntax

Functlon

A description of the function(s) performed by the statement appears
he re .

•
• Characteristics, implications, and limitations of the statement are

defined here .

•
Example

A programming example is shown here.

See Also

Any related statements or information are listed here.

6-3

language Reference

SYNTAX DIAGRAM NOTATION

6-4

Syntax d iagrams define correct spelling, punctuation, sequences of
words, symbols, and expressions. The syntax diagrams used here
conform to the following guidelines:

• Any path through a diagram starting from the left that does not run
contrary to an arrowhead forms a legitimate statement.

• W ords in a circular enclosure are to be entered as shown. W ords
can be typed in lowercase, uppercase, or a combination of
lowercase and uppercase letters.

Example:

• Words in a rectangular enclosure represent other information that
is described either in the General lnformation section, in another
syntax diagram, as a note on the same page, or that is in general
use.

Example:

• An asterisk in a circular enclosure above bracketed words indica tes
a default register entry. Only the asterisk should appear in the
source file; the compiler substitutes the information in the
brackets.

Example:

--+G)--+
(REG F)

Language Reference

SPECIAL SYMBOLS

The following symbols are used in the syntax diagrams:

SYMBOL FUNCTION

Separates a list of symbolic names (i.e. , register name
declarations)

EOL Indicates end of line

Indicates range (i.e. , addr to addr), used as a delimiter
in AUX and DPY commands

> Relational operator

>= Relational operator

Relational operator

@ At

Separates the label name from the statement to be
executed

6-5

Language Reference

SYMBOLIC NAMES

6-6

Symbolic names appear in the syntax diagrams as

The following rules apply to symbolic names:

• Symbolic names must begin with a letter, and they can contain any
number of letters, digits, and underscore characters (-).

• Only the first eight characters of a name are significant. For
example, TESTMENU 1 and TESTMENU2 are treated as
identical names.

• 901 0A Language keywords, such as READ and PROGRAM,
cannot be used as symbolic names. For example, LOOP cannot be
used as a symbolic label name, although LOOP ! is acceptable.

• Appendix A contains a complete list of the 90 10A Language
keywords. Using a keyword as a symbolic name causes the
compiler to issue a SYNT AX ERROR message.

• Symbolic names must contain at least one letter other than A, B, C,
D, E, or F so that they can be distinguished from hexadecimal
constants. This means that words like BAD, ACE, or F ADE
cannot be used as symbolic names because the compiler will
interpret them as hex constants . U sing a hex constant as a symbolic
name causes the compiler to issue a SYNT AX ERROR message.

Language Reference
Symbol ic Names

• Symbolic names can be used anywhere that the corresponding
actual program number, register number, or label number can
occur in a 90 1 OA program.

• Forward references are permissable for program names and label
names. In other words, an EXECUTE or GOTO statement using a
symbolic name is allowed to appear either before or after the
corresponding PROGRAM or LABEL statement.

• Symbolic names are case-insensitive. For example, a name can be
declared in uppercase and referenced in lowercase, and names can
be a mixture of uppercase and lowercase letters.

6-7

Language Reference

EXPRESSIONS

6-8

The syntax element

is used to designa te a 90 l OA expression. Expressions consist of
combinations of the following:

• Hexadecimal Constants (e.g., l OFC)

• Register References (e.g., REG3)

• Unary Operators (CPL, DEC, INC, SHL, SHR)

• Binary Operators (AND, OR)

U nary operators specify operations that may be performed on only one
register at a time. The five unary operators function as follows:

• CPL Replaces the value stored in the register with its binary ·"""""
ones complement.

• DEC Decrements the binary value of a register by l .

• INC lncrements the binary value of a register by l .

• SHL Shifts the binary contents of the register one bit to the left.
The farthest left bit is d iscarded. The farthest right bit
becomes O.

• SHR Shifts the binary contents of the register one bit to the
right. The farthest right bit is d iscarded. The farthest left
bit becomes O.

Binary operators perform an operation with two registers or with a
register and a hexadecimal value, or two hexadecimal values. The two
binary operators function as follows:

• AND Performs the logical bit-wise AND operation between two
values.

e OR Performs the logical bit-wise OR operation between two
values.

Language Reference
Expressions

In certain contexts, expressions are interpreted as decimal, binary or
hexadecimal numbers. These cases are indicated in the syntax diagram
as follows:

[dec] [bin] [hex]

� � �
Numeric constants in decimal expressions may contain only the digits
O through 9. Similarly, numeric constants in binary expressions may
contain only the digits O and 1 , and hexadecimal expressions may
contain only the digits 0-9, A-F.

A unary operator followed by a decimal number is the unary operator
shorthand feature described in Section 4, Part 2.

expr¡rltie;er;;:;m-1-.�r----AN-0---,....-_-_-
e
_
x

_

p
_
r
-
-
-.....,-�-�.,

L.@J .

term -,...f�n�um�b�er�l-------r,--------------;r•
na me

6-9

Language Reference

ADDRESSES

6-1 0

The following syntax diagrams apply to statements that require an
address or an address range to be specified.

address � addr block ------..,

addr �

GENERAL INFORMATION

Statement Formal

Language Reference

Follow these guidelines when constructing statements:

• Each 90 10A statement must be on a separate line. Continuation
lines are not allowed.

• A statement may begin in any column.

• Blanks and tabs are ignored, except when they occur in DPY or
AUX statements.

• Blank lines are ignored.

• Adjacent keywords, symbolic names, and numbers must be
separated by at least one blank.

Program Comments

The rules for using comments are as follows:

• Comments start with an exclamation point (!), and they extend to
the end of the line.

• A comment can be on the same line as a 90 1 OA statement, or it can
be on a separate line.

• If a comment extends over several lines, each line must begin with
an exclamation point.

• A comment cannot be placed in the middle of a 90 10A statement .

6-1 1

Language Reference
General 1 nformation

File lnclusion

6-1 2

The form of the INCLUDE statement is

The compiler replaces the INCLUDE statement with the contents of
the specified file. The effect is equivalent to manually typing the
contents of the included file in the source file at that point.

The following rules apply:

• The filename must be the name of an existing file.

• If the host operating system is case-sensitive regarding filenames,
then the filename must be properly capitalized.

• A source file may include a file which in turn includes another file.

• INCLUDE statements must be on a line by themselves but can �
occur anywhere in the so urce file. IN CL UD E statements m ay e ven
appear as a statement in a 90 10A program.

• The programmer is responsible for ensuring that the contents of
the indicated file can legally be inserted at that point in the source
file .

• A standard use of the INCLUDE statement is to include a pod data
file.

S O U RCE F I L E SYNTAX

The following pages contain reference information on source file
syntax. F or more explanation about a specific topic, refer to Section 4,
Writing Programs.

Source File Syntax contains the following syntax diagrams:

SOURCE FILE
SETUP
ADDRESS SPACE
ADDRESS DESCRIPTOR
GLOBAL DECLARA TION
SYMBOLIC REGISTER NAME DECLARATION
9010A PROGRAM
PROGRAM BODY
LOCAL DECLARA TION
BINARY PROGRAM
INCLUDE DIRECTIVE

6-1 3/6-1 4

S O U RCE F I LE

Syntax

Function

This syntax diagram defines the overall structure of the source file.

• The appropriate pod data file must be included if your programs
have any pod dependencies.

• At this time, the pod data file must be one of the following (more
files will be added as new interface pods are implemented):

1 802.POD
6502.POD
6800.POD
68000.POD
6802.POD
6809.POD
6809E .POD
804 l .POD
8048.POD

8080.POD
8085 .POD
8086.POD
8086MX.POD
8088.POD
8088MX.POD
9900 .POD
Z80.POD

• The setup information, address space information, and global
declarations are all optional. They may appear more than once,
and they may appear in any order, providing that they appear
before the first 90 1 0A program.

6-1 5/6-1 6

S ETUP

Syntax

Function

Allows the user to control the reporting of UUT errors, enable
microprocessor lines, and specify operating parameters.

• All setup parameters must be declared at the beginning of the
source file preceding all programs.

• Setup parameters establish initial setup conditions only.

• Setup parameters are divided into the following categories:

l . Reporting UUT errors o r enabling microprocessor lines:
POD
TRAP
ENABLE
EXERCISE ERRORS
BEEP ON ERR TRANSITION

2. Specifying operating parameters:
BUS TEST
RUN UUT
TIMEOUT

3. Relating to operation of the AUX 1/ F:
STALL
UNSTALL
NEWLINE
LINESIZE

Detailed information about setup parameters is contained in the
next part of this section, Setup Parameters .

6-1 7

SET U P

• The compiler supplies default values (as listed in Appendix D) for
any setup parameters that do not explicitly appear in the source
file.

• The compiler default values for setup parameters can be
overridden by the pod-specific values by including the appropriate
pod data file.

See Also

6-1 8

Default Setup Parameters (Appendix D), Setup Parameter Limits
(Appendix E), Pod Data Files (Section 4, Part l)

AD D R ESS S PACE

Syntax

ADORESS SPACE

add ress descriptor

Function

Forms the UUT memory map; identifies address blocks of RAM,
ROM, and 1/ O.

• All address descriptors must be declared at the beginning of the
source file, preceding all programs.

• Up to 100 address descriptors can be specified in the source file.

Example

ADDRESS SPA CE INFORMA T/ON

RA M @ 5000-SOFF

ROM @ 0000-0FFF SIG 0047
ROM @ 3000-4FFF SIG 2860
ROM @ 7000-70FF SIG OBAA
ROM @ AOOO-A FFF SJG 44 C9

1/0 @ 1A00-1A01 BITS 7F

6-1 9/6-20

AD D R ESS D ESCR I PTO R

Syntax

hex number

hex number

hex number

Function

Forms the U UT memory map; identifies address block of RAM, ROM
and I /0 .

• In a 90 1 0A program statement, if a RAM, ROM, or 1 / 0 test is
specified but the address range to be tested is not specified, the
90 1 OA performs the specified test o ver all blocks of the appropriate
memory type described by the address descriptors.

• Parameters and limits are as follows:

Example

PARAMETER

signature (ROM)
bit mask (1/ O)

RA M @ 5000-SOFF

LIMIT

0-FFFF
1 -FFFFFFFF

ROM @ 0000-0FFF S/G 0047
ROM @ 3000-4FFF SIG 2860
ROM @ 7000-70FF SIG OBAA
ROM @ AOOO-AFFF S/G 44 C9

1/0 @ 1A00-1A01 BITS 7F

See Also

LEARN, RAM TEST, ROM TEST, 10 TEST (in 90 10A Program
Statements part of this section)

6-21 /6-22

Syntax

G LO BAL D ECLARAT I O N

symbolic
register name

declaration

Functlon

Allows the programmer to define symbolic register names with global
seo pe.

• N ames with global scope are known throughout the entire source
file and all files that are included after the global declarations.

• If a re gis ter name is redefined locally (inside a 90 1 OA program), the
local definition overrides the global definition and the program has
no knowledge of the global declaration.

• Global declarations must appear at the beginning of the source file,
befo re the first 90 1 OA program is encountered.

• Global symbolic register declarations are restricted to the global
registers (8-F).

Example

DECLARA TIONS
ASSIGN REGB TO LOA D
ASSIGN REG9 T O FLA G

PROGRAM U10

See Also

SOURCE FILE, SYMBOLIC NAMES, SYMBOLIC REGISTER
NAME DECLARATION, LOCAL DECLARATION

6-23/6-24

Syntax

SYM B O L I C REG I STER
NAM E D ECLARAT I O N

Function

Declares a symbolic name that the programmer uses in programs to
refer to the indicated register.

• Symbolic register names must be declared in the global or local
declarations section of the source file prior to being used in a
program.

• Symbolic register names can be used wherever a register reference
can be made (including AUX and DPY statements).

• Severa! symbolic names can be assigned to the same register.

Example

DECLARA TIONS
A SSIGN REG 1 TO TEMP, FLA G
ASSIGN REGA TO PINNO

See Also

G L O B A L D E C L A R A T I O N , L O C A L D E C L A R A T I O N ,
SYMBOLIC NAMES, Predefined Register Names (in Section 4,
Part 3)

6-25/6-26

901 0A PROG RAM

Syntax

Functlon

This syntax diagram defines the overall structure for a 901 OA program.

• Program numbers must be decimal numbers in the range 0-99.

• If a byte count appears in the program statement, the compiler
compares it to the actual byte count and issues a warning message if
the byte counts differ.

• Symbolic program names can be used in this statement.

• The source file can contain no more than one hundred 90 10A
programs.

• N umbered programs must appear in the correct order. If programs
with symbolic names are combined with numbered programs,
there must be a correct number of symbolically named programs
between numbered programs. For example, if there are two
numbered programs, program 4 and program 7 , then there is room
for only two symbolically named programs between them.

Example

PROGRA M 35 728 BYTES
PROGRA M GETSIG
PROGRA M KEYBD TS T

See Also

EXECUTE, Symbolic Program Names (Section 4, Part 3)

6-27/6-28

PRO G RAM BODY

Syntax

Functlon

This syntax diagram defines the body of a 901 0A program.

The details of the 901 0A statements are provided in the 901 0A
Program Statements portion of this section.

See Also

LOCAL DECLARATION, 901 0A PROGRAM STATEMENTS,
BINARY PROGRAM

6-29/6-30

LOCAL D ECLARAT I O N

Syntax

Functlon

symbolic
register name

declaration

Allows the programmer to define symbolic register names with local
scope.

• Names with local scope are known only within the program in
which they are declared.

• Duplicate local names in different programs are unrelated.

• Local declarations must appear between the program statement
and the first statement of the 90 10A program body.

• No local declarations may appear inside a binary program.

• Symbolic names may be declared locally for all registers (0-F).

Example

PROGRA M UUTTES T

DECLARA TIONS
A SSIGN REG 1 TO ERRCN T
ASSIGN REG2 TO PINCNT, SETBIT

ERRCN T = O
SETBIT = 4

See Also

SOURCE FILE, SYMBOLIC REGISTER NAME DECLARA
TION, GLOBAL DECLARATION

6-31 /6-32

B I NARY PROG RAM

Syntax

checksum

Functlon

The 9000A Utility Program tape contains binary programs.

• Binary programs are introduced by the standard program
statement (PROGRAM xx), followed on a separate line by
<BINAR Y> , followed by the binary program.

• A binary program contains lines of hex code. Each line 1s
terminated by a one-byte checksum.

• A "*" is used to delimit a line of code from the checksum, except for
the last line of the program where a "$" is used.

• The file transfer program (XFER) automatically reformats binary
programs into the required format when they are transferred from
the 90 1 0A to the host system in source form.

Example

PROGRAM 10
(BINA R Y)
514F50DDE5DD2A2BOODD562FDD5E2E7BE60F87874F0600FD2A2BOOFD097BE6F0*28
CB3FCB3F4FDD097A E60FB7874F2A2B0009DD7E02FD86025FDD7E03FDBE0357DD*D4
7EOOFDBE007 7DD7E 01 FDBE 01237 72373 2372DDE1 01000 OC 9284329464C554B65 *CO
205645522031 SN$5E

See Also

9010A PROGRAM

6-33/6-34

I N CLU D E D I R ECTIVE

Syntax

Functlon

Replaces the INCLUDE "filename" statement with the contents ofthe
indicated file. Equivalent to manually typing the contents of the
included file in the source file at that point.

• The filename must be the name of an existing file.

• If the host computer system is case-sensitive regarding filenames,
then the filename must be properly capitalized.

• A source file may include a file which in turn includes another file.
Attempting to nest include files too deeply will result in a 901 0A
error message.

• Include directives must be on a line by themselves but can occur
anywhere in the so urce file. lnclude directives may even appear as a
statement in a 90 1 0A program.

• The programmer is responsible for ensuring that the contents of
the indicated file can legally be inserted at that point in the source
file.

• A standard use of the INCLUDE statement is to include a pod data
file.

Example

inc/ude "1 802. POD"

See Also

Pod Data Files (in Section 4, Part 1)

6-35/6-36

SETU P PARAM ETERS

CONTENTS

Beep . 6-39
Bus Test . 6-41
Enable . 6-43
Exercise Errors . 6-45
Linesize . 6-4 7
Newline . 6-49
Pod . 6-5 1
Run UUT . 6-53
Stallj Unstall . 6-55
Timeout . 6-57
Trap . 6-59

6-37/6-38

BEEP

Syntax

BEEP ON ERR TRANSITION

Functlon

Allows the programmer to control whether or not the 90 1 0A should
beep on ERR TRANSITIONS.

• YES enables the audible beep that sounds whenever an error is
detected and reported. The beep also sounds whenever the error is
removed.

• The 90 1 0A's default value is YES.

Example

BEEP ON ERR TRANSJ TION - NO

See Also

EXERCISE ERRORS, TRAP

6-39/6-40

BUS TEST

Syntax

--+@ t::@DJ t:Ci}J �� hex number �

Functlon

When the Bus Test is performed in a 90 1 0A program, testing of data
lines occurs at the address listed.

• Setup parameter limits for Bus Test are 0-FFFFFFFF. Refer to
the pod instruction manuals for legal addresses.

• If the Bus Test statement appears in the Setup Parameters section
of the source file, then the default Bus Test address is as indicated.

• If this statement was not present and a pod data file was included �t
the beginning of the so urce file, the compiler supplies the definition
for BUSADR.

• If a pod data file was not included at the beginning of the so urce
file, the default Bus Test address is 0000.

Example

BUS TEST @ 1 COO

See Also

Pod Data Files (in Section 4, Part 1), BUS TEST (in 90 10A Program
Statements part of this section), and Appendix D (Pod-Specific Setup
Parameters)

6-41 /6-42

E NABLE

Syntax

forcing line

Functlon

Allows an operator to individually enable or disable pod forcing lines.

• If YES is selected, the forcing line is enabled.

• If NO is selected, the forcing line is disabled.

• Forcing lines are pod-specific and include lines such as the
following:

WAIT
RDY
TSC
DBE
HALT

BR/ ACK
INTR
M R
DMA
UNUSED

READY
BUSRQ
HOLD
RQGTO
RQGTl

• There are a maximum of eight enableable forcing lines. Refer to the
pod instruction manuals for specific information.

• The appropriate pod data file must be included prior to the
appearance of any ENABLE statements. In addition, a POD
statement identifying the pod should appear in the Setup
Parameters section of the source file.

• lf a pod data file was included at the beginning of the so urce file,
the forcing lines listed in the definition for FORCELNS will all
have default values of YES.

Example

ENA BLE HAL T - NO

See Also

Pod Data Files (in Section 4, Part 1) and Appendix D (Pod-Specific
Setup Parameters), POD

6-43/6-44

EXERCISE ERRORS

Syntax

EXERCISE ERRORS

Function

Allows the operator control o ver 90 1 OA error reporting and interactive
handling of errors.

• If YES is selected, the 90 1 OA displays detected error messages and
prompts the operator to loop on the errors.

• If NO is selected, the errors are not reported to the operator, but
error messages are transmitted to the RS-232 if it is connected
(without the -LOOP? portian of the message) .

• The 90 1 0A's default value is YES.

Example

EXERCISE ERRORS - NO

See Also

BEEP, TRAP

6-45/6-46

LI N ES IZE

Syntax

Functlon

Allows the programmer to specify the maximum number of characters
transmitted per line when the 901 0A is sending data through the AUX
I / F.

• Setup parameter limits for LINESIZE are 1 0-255.

• The LINESIZE used is determined by the line size of your remo te
device.

• The 90 1 0A's default value is 79.

Example

LINESIZE 120

See Also

NEWLINE, ST ALL/ UNST ALL

6-47/6-48

N EWLI N E

Syntax

Functlon

When the 90 1 0A is sending data through the AUX 1 / F, a terminator
sequence is sent at the end of each 1ine. This statement allows the
programmer to specify both the ASCII terminator characters to be
sent and the delay between lines.

• Setup parameter limits for NEWLINE are eight hexadecimal
d igits.

• The 90 10A default value is OOOOODOA.

• The selection of the terminator sequence allows the operator to
meet the needs of a wide variety of remote devices. For example, if
the remo te device provides its own Linefeed at the end of each line,
the terminator sequence would consist of only the Carriage Return
(OOOOOD). Or, if a double space is needed between lines, the
terminator sequence would be a Carriage Return and two
Linefeeds (ODOAOA).

• The eight hexadecimal digits have the following meaning:

First two digits: These may ha ve any hexadecimal value between O
and FF. They must be followed by six digits as described below.
The two digits represent a count that corresponds to a timing de la y
between the transmission of lines. For 90 1 0A versions prior to 2C,
the timing delay is approximately 2.4 ms/ count, providing a total
timing delay range of O to .6 seconds. The delay is 6 ms/ count, for
maximum de la y of approximately 1 .5 seconds with 90 1 OA versions
2C and later.

Last six digits: These are the ASCII terminator characters which
are sent at the end of each line when the 9010A is sending data. The
characters are also sent once as the initial trigger when the AUX
1/ F READ operation is selected. The characters, which ha ve two
digits each, are sent left to right. Zeros are not sent.

6-49

N EWLI N E

Example

NEWLINE OOODOAOA ! terminator sequence of a carriage
return and 2 linefeeds

NEWLINE OOOOODOA

NEWLINE 1AOOOOOD

See Also

terminator sequence of a carriage
return and 1 linefeed

terminator sequence of a time de/ay
and carriage return

LINESIZE, ST ALL/ UNST ALL

6-50

POD

Syntax

podname

Functlon

Identifies the pod to be used when executing the 90 1 OA programs in the
source file. The POD statement allows the 90 1 0A to use the data in the
pod data file to configure its setup parameters to match the specified
pod.

• At this time podname is one of the following (more files will be
added as new interface pods are implemented):

1 802
6502
6800
68000
6802

6809
6809E
8041
'35 / 48
'39/49

'40/ 50
8080
8085
8086
8086MX

8088
8088MX
9900
Z80

• When using the 8048 pod, the podname must be listed in this
statement as '35 / 48, '39/49, or '40/ 50, as appropriate.

Example

POD - BOBO

POD '39/49

See Also

Pod Data Files and 90 10A Pod Interaction (in Section 4, Part 1)

6-51 /6-52

R U N U UT

Syntax

--+(RUN UUT) t:::Ci)OJ' ��>[hex number f..-+

Function

U sed when the address for a RUN UUT operation is allowed to default
in a 90 1 0A program.

• Setup parameter limits for RUN UUT are 0-FFFFFFFF.

• If the R UN UUT statement appears in the setup parameters section
of the source file, then the RUN UUT address will be as indicated.

• If this statement was not present and a pod data file was included at
the beginning of the so urce file, the compiler supplies the definition
for UUTADR.

• If a pod data file was not included at the beginning of the source
file, the default R UN UUT address is 0000.

Example

RUN UUT @ CODO

See Also

Pod Data Files (in Section 4, Part 1) , RUN UUT (in 90 10A Program
Statements part of this section), and Appendix D (Pod-Specific Setup
Parameters)

6-53/6-54

Syntax

Function

STALL
U NSTALL

Allows the programmer to specify the Stall and Unstall characters (X
ON and X-OFF) to which the 90 10A responds when it is sending data
through the AUX 1 / F.

• Setup parameter limits for Stall and Unstall are O-FF.

• Any ASCII character may be selected for the Stall and Unstall
characters . The characters are specified with their hexadecimal
ASCII values. The characters used are those that are required by
your remate device.

• The 90 1 0A's default values are as follows:

Example

STALL 1 3
UNSTALL 1 1

S TALL 13

UNS TALL 1 1

See Also

LINESIZE, NEWLINE

(CTRL S)
(CTRL Q)

6-55/6-56

T I M EOUT

Syntax

Functlon

Represents a count of how long the 9010A waits before timing out on
an interface pod operation.

• Setup parameter limits for TIMEOUT are 0-60000.

• The 90 1 0A's default value is 200.

Example

TIMEOUT - 200

6-57/6-58

TRAP

Syntax

BAO POWER SUPPL Y

ILLEGAL ADDRESS

ACTIVE INTERRUPT

ACTIVE FORCE UNE

CONTROL ERROR

ADDRESS ERROR

DATA ERROR

Function

Allows the operator to individually enable or disable traps on UUT
system errors .

• If YES is selected, the UUT system error is reported to the operator
as it occurs .

• IF NO is selected, the UUT system error is not reported to the
operator as it occurs.

• Any error types not explicitly specified are set to the 90 l OA default
values.

• The 90 1 0A's default values are as follows:

Example

TRAP BAD POWER SUPPLY
TRAP ILLEGAL ADDRESS
TRAP ACTIVE INTERRUPT
TRAP ACTIVE FORCE UNE
TRAP CONTROL ERROR
TRAP ADDRESS ERROR
TRAP DATA ERROR

TRAP BAO PO WER SUPPL Y - NO

TRA P A C TI VE IN TERRUP T - NO

See Also

EXERCISE ERRORS, BEEP

YES
YES
NO
YES
YES
YES
YES

6-59/6-60

901 0A PROG RAM STATEM ENTS

CONTENTS

Atog . 6-63
Auto Test . 6-65
Aux . 6-67
Bus Test . 6-7 1
Dpy . 6-73
Dtog . 6-77
Execute . 6-79
Goto . 6-8 1
If . ,' 6-83
10 Test . 6-85
Label . 6-87
Learn . 6-89
Probe . 6-9 1
RAM Test . 6-93
RAMP . 6-95
Read . 6-97
Reg . 6-99
Reptf Loop . 6-1 0 1
ROM Test . 6-1 03
Run UUT . 6-105
Stop . 6-1 07
Sync . 6-1 09
Unary . 6-1 1 1
Walk . 6-1 1 3
Write . 6-1 1 5

6-61

·""""'

The syntax diagrams for the 90 1 0A program statements are arranged
alphabetically on the following pages. The functional groupings of the
statements are as follows:

FUNCTION STATEMENT

TESTS AUTO TEST
BUS TEST
10 TEST
RAM TEST
ROM TEST

TROUBLESHOOTING ATOG
DTOG
RAMP
READ
WALK
WRITE

MODE REPT/ LOOP ·�

RUN UUT
STOP

TEST SEQUENCING AUX
DPY
EXECUTE
GOTO
IF
LABEL

UUT M EMORY MAPPING LEARN

PRO BE PRO BE
SYNC

REGISTER OPERA TION REG
UNAR Y (CPL, DEC, INC,
SHL, SHR)

·�

6-62

ATOG

Syntax

(REG F] (REG 0]

Functlon

Toggles an operator-specified address bit from one logic state to
another. Two read operations are performed, one at the original
address and another after the bit is toggled.

• If the bit number is explicitly specified in the expression, it must
ha ve a decimal val u e in the range O - (n-1) where n equals bits in the
address bus.

Example

A TOG @ 13FC BIT 7

See Also

DTOG, RAMP, READ, WALK, WRITE

6-63/6-64

Syntax

�
l.@J

Functlon

AUTO TEST

Performs in sequence Bus Test, ROM Test, RAM Short Test, and 10
Test for versions prior to 2C. For versions 2C and later, the sequence is
Bus Test, RAM Short Test, ROM Test, and 10 Test.

• Errors are reported and locations are identified as described for the
individual tests.

Example

A UTO TES T

A U TO

See Also

BUS TEST, 10 TEST, RAM TEST, ROM TEST

6-65/6-66

AUX

Syntax

string

Functlon

Allows for sending and receiving data between the 901 0A and other
devices using the RS-232 Interface Option.

• The string parameter represents the text to be sent.

• The text is separated from the A UX keyword by a single space,
hyphen, or tab.

• Any spaces beyond the single separating character are treated as
part of the display message, resulting in leading blanks.

• The AUX string can contain a maximum of 32 characters.

• Spaces at the end of an AUX string are ignored. If trailing blanks
are desired, the appropriate number of underscores should be
appended to the A UX string.

• Characters allowed in the AUX string are limited to those available
on the 901 0A. The valid characters are:

A-Z +
0-9

@ % •
< \
> 1

?

"

$
space
_ (underscores will be converted to spaces)

• The functions of the special A UX 1/ F characters are shown on the
next two pages. Symbolic register names can be used with these
special AUX characters . Symbolic register names are counted as
one character in the A UX string.

6�7

AUX

• A symbolic register name cannot be immediately followed by a
hexadecimal character (0-9, A-F). A separating space is required.

Example

A UX ROM SIGNA TURE /S $ROMSIG 1 ROMSIG is a symbolic
register n ame. The
s tring to be sent is
"ROM S I G NA TURE
/S" followed by the
hexadecimal contents
of ROMSIG.

A UX - tests complete

See Also

6-68

DPY

Functions of AUX I/ F Characters

CHARACTER

$

@

1

ACTION CAUSED

Sends a control G (bell) to the RS-232 interface.

W hen followed by a hexadecimal d igit or
symbolic register name, $ causes the contents of
the designated register to be transmitted in
hexadecimal to the RS-232 interface.

The same as for the $ symbol, except that the
contents are transmitted in decimal.

When 1 is followed by a hexadecimal digit or
symbolic register name, it suspends program
execution, waits for the next byte of data from the
RS-232 interface, and places the value of the byte
in the designated register. (The upper three bytes
of the register equal zero.) If the RS-232 interface
is configured to transfer eight data bits, then eight
data bits appear. Otherwise, the eighth data bit
(bit 7) is zero.

%

+

AUX

When \ is followed b y a hexadecimal digit or
symbolic register name, it places the status of the
RS-232 interface in the lower five bits of the
designated register. (The upper 27 bits are zero.)
The five status bits are as follows:

Bit 0:

Bit 1 :

Bit 2:

Bit 3 :

Bit 4 :

1 = Parity Error
O = N o Parity Error
1 = Framing Error
O = N o Framing Error
1 = Overrun Error
O = N o Overrun Error
Status of Receive Buffer
1 = Character Received
O = N o Character Received
Status of Transmit Buffer
1 = Transmit Buffer is Empty;
Ready for Next Character
O = Character Still Being Sent

When % is followed by a hexadecimal digit or
symbolic register name, it transmits the low-order
byte contained in the designated register. This
provides a way for the programmer to send the
full range of A S C I I characters (including
characters not usually allowed in an A UX string)
to the AUX I / F. Eight data bits are sent if the RS-
232 interface is configured to transfer eight bits.

When + is the last character in an AUX I/ F step,
it prevents the NEWLINE termination sequence
from being sent at the end of the line.

NOTE: In order to cause one of the special symbols $, @, 1 , \ , or % to
be sent to the RS-232 interface in the case where the symbol is f0llowed
by a hexadecimal digit or symbolic register name, the symbol must
appear twice in the specification.

EXAMPLE:

STATEMENT

AUX $ 1
AUX $$1
AUX $X

TEXT SENT

(contents of REG 1)
$ 1
$X

6-69/6-70

Syntax

�
4@-J

Functlon

BUS TEST

Tests for proper function of the UUT control lines, data lines, and
address lines.

• When Bus Test is performed, testing of data Iines occurs at the
address specified in the Bus Test setup parameter.

Example

BUS TEST

BUS

See Also

AUTO TEST, 10 TEST, RAM TEST, ROM TEST, and BUS TEST
(in Setup Parameters part of this section)

6-71 /6-72

DPY

Syntax

string

Functlon

Displays the string on the 901 0A.

• Text to be displayed is separated from the DPY keyword by a
single space, hyphen, or tab.

• Any spaces beyond the single separating character are treated as
part of the display message resulting in leading blanks.

• The DPY string can contain a maximum of 32 characters.

• S paces at the end ofa DPY string are ignored. If trailing blanks are
desired, the appropriate number of underscores should be
appended to the D PY string.

• Characters allowed in the DPY string are limited to those available
on the 901 0A. The valid characters are:

A-Z +
0-9

'

@ % *
< \
> 1

"

$
? space
_ (underscores will be converted to spaces)

• The functions of the special DPY characters are shown on the next
page. Symbolic register names can be used with these special DPY
symbols. The symbolic register names are counted as one character
in the D PY string.

• A symbolic register name cannot be immediately followed by a
hexadecimal character (0-9, A-F). A separating space is required.

6-73

D PY

Example

DPY - test 3 complete - pass

DPY - trailing blank_

See Also

AUX

CHARACTER

$

@

\

6-74

Functions of DPY Characters

ACTION CAUSED

Causes the 9010A to beep when DPY is executed.
This symbol does not appear on the display when
DPY is executed.

When $ is followed by a hexadecimal or symbolic
register name, it causes the contents of the
d e s ig n a t e d r e g i s t e r t o b e d i s p l a y e d i n
hexadecimal on the display.

The same as for the $ symbol except that the
contents are displayed in decimal.

When 1 is followed by a hexadecimal digit or
symbolic register name, it suspends program
execution and waits for input. When the operator
enters a hexadecimal value terminated by
ENTER, the 90 1 OA places the value in the
des ignated register and resumes program
execution. Pressing ENTER without specifying a
hexadecimal value causes the value to default to
the previous contents of the register.

The same as for the 1 symbol, except that the
90 10A accepts only a decimal entry.

?

%

+

D PY

When ? is followed by a hexadecimal digit or
symbolic register name, it suspends program
execution and displays the question mark (?). If
the operator presses the CLEAR/ NO key, the
9010A places a O in the designated register. If the
operator presses the ENTER/ YES key, the
90 10A places a 1 in the designated register. After
the 1 or O is p1aced in the register, the 901 0A
removes the question mark �nd then resumes
program execution.

When % is followed by a hexadecimal digit or
symbolic register name, it enables or disables
asynchronous input from the operator during
execution. Asynchronous input is stored in the
register designated by the hexadecimal digit or
symbolic register name

When + is the first character in the specification,
it causes following characters in the specification
to be appended to the text that is on the display at
the time DPY is executed.

NOTE: In order to cause one of the special symbols $, @, 1 , \ , ? , or % to
be displayed in the case where the symbol is followed by a hexadecimal
digit or symbolic register name, the symbol must appear twice in the
specification.

EXAMPLE:

STATEMENT

DPY $ 1
DPY $$ 1
DPY $X

TEXT DISPLAYED

(contents of REG 1)
$ 1
$X

6-75/6-76

DTO G

Syntax
[dec]

Functlon

Toggles a programmer-specified data bit from one binary logic state to
another by performing two write operations at a programmer
specified address .

The DTOG @ CTL function toggles a programmer-specified control
line from one binary logic state to another.

• If the DTOG @ CTL form is used and the expression immediately
following the equal sign (-) is specified explicitly, the expression
must be a binary value from O to 1 1 1 1 1 1 1 1 .

• If the address (not the DTOG @ CTL form) is specified, then the
following bit number expression (after BIT) must have a decimal
value in the range 0-(n-1) where n equals the number of bits in the
microprocessor data bus .

• In the DTOG @ CTL form, if an expression is used to specify the
bit number, it must have a decimal value in the range 0-7.

• Refer to the pod instruction manuals or the label on the interface
pod to identify which control lines are user-writable for a specific
pod.

Example

D TOG @ REGF = FF BIT REG3

D TOG @ C TL = 0 1 01 1 1 1 1 B I T 5

See Also

ATOG, RAMP, READ, WALK, WRITE

6-77/6-78

EXECUTE

Syntax

[dec]
�-

..... ,----,--t•{l :=je�xp�r :=Jt--+
� Le PROGRAM J

Functlon

Executes one program from within another program in a subroutine
like fashion.

• Program numbers are limited to the range 0-99.

• A program may call a program which in turn calls another
program. Programs may be called up to ten levels of nesting.

• lf multiple levels of programs are called, a program may not call
any program from a previous leve!.

• A program may not call itself.

• Symbolic program names can be used in this statement.

• The compiler issues a warning message if yo u attempt to execute a
program that is not contained in the files being compiled.

Example

EXECUTE PROGRA M 5

EX 5

EXECUTE DELA Y

See Also

P ROGRAM

6-79/6-80

G OTO

Syntax

Functlon

Allows the programmer to construct GOTO (unconditional branch)
steps which redirect program execution to a label in the program.

• Symbolic label names can be used in this statement.

• Within a single program, symbolic names cannot be mixed with
hexadecimal label numbers (0-9, A-F).

• More than one GOTO step may redirect program execution to the
same label.

• The label to which program execution is redirected may appear
anywhere in the program.

Example

G O T0 3

See Also

LABEL, IF

6- 81 /6-82

Syntax

expr expr

Functlon

Creates conditional branch steps.

• Symbolic label names can be used in this statement.

I F

• Within a single program, symbolic labels cannot be mixed with
hexadecimal label numbers (0-9, A-F).

• More than one IF step may redirect program execution to the same
la be l.

• The label to which program execution is redirected may appear
anywhere in the program.

Example

/F REG3 ANO 7F > REG4 G O TO 1

See Also

GOTO, LABEL

6-83/6-84

1 0 TEST
Syntax

'"' ""''�
[REG A[

Functlon

Tests the read-write capability of all bits in 1/ O registers described as
having read-write capability.

• If an expression is used to specify the bit mask (following BTS), it
must have a hexadecimal value in one of the following ranges:

1 -FF
1 -FFFF
1 -FFFFFF
1 -FFFFFFFF

8-bit microprocessor
1 6-bit microprocessor
24-bit microprocessor
32-bit mocroprocessor

• Bits that are equal to 1 in the bit mask correspond to data lines that
are to be tested for read-write capability. Bits that are equal to O in
the bit mask correspond to data lines that are not to be tested for
read-write capability.

• If no address block is specified, then the 90 10A performs the
specified 10 TEST over all blocks of memory described as 1 / O
under Address Space Information.

Example

10 TES T @ 4010 - 401 F B TS 30

See Also

AUTO TEST, BUS TEST, RAM TEST, ROM TEST, LEARN,
ADDRESS DESCRIPTOR (in Source File Syntax part of this
section)

6-85/6-86

LABEL

Syntax

Functlon

Allows the programmer to create labels, i.e., program steps inserted
into programs to provide points of entry for branching steps. Identifies
a specific location in a program.

• Each label is identified by a single hexadecimal digit (0-9 and A-F)
or with a symbolic name.

• Within a single program, symbolic label names cannot be mixed
with hexadecimal label numbers (0-9, A-F).

• 9010A Language keywords must not be chosen as symbolic label
names (such as LOOP).

• There are 1 6 possible labels for each program.

• All label names must be distinct.

• Labels may appear in any order.

• A label may exist without a branch (GOTO) step to the label.

• A 9010 program statement can follow the colon.

Example

L 1:

DONE: S TOP

FOUND: LA BEL FOUND

See Also

GOTO, IF

6-87/6-88

LEAR N

Syntax

� 1._,¡----r--t•1_l_!a�dd:!:_r �blo�ck�� • [(i}1
Functlon

Tests each address location in sequence and identifies it as RAM,
ROM, 1 / O, or unassigned. Also creates an address descriptor for each
block of memory which was identified.

• If no addr block is specified, the Learn operation is performed on
the entire microprocessor address space . Refer to the pod
instruction manuals for specific address information.

Example

LEA RN

LEA RN @ 1 000 - 4FFF

See Also

10 TEST, RAM TEST, ROM TEST, ADDRESS DESCRIPTOR (in
Source File Syntax part of this section)

6-89/6-90

PRO BE

Syntax

PRO BE

Functlon

The Read Pro be function places accumulated pro be data into Register
O. Pro be data consists of the logic levels detected, the number of events
counted, and the signature computed at the probe tip.

In Register O, event counts are assigned to bits 0-6, signatures are
assigned to bits 8-23, and logic levels are assigned to bits 24-26.

Example

REA D PROBE

RO PROBE

PRO BE

See Also

SYNC

6-91 /6-92

RAM TEST

Syntax

Functlon

RAM SHORT quickly identifies common RAM failures such as
address decoding errors or bits that are not read-writable. RAM
LONG performs the same tests as RAM SHORT and in addition,
performs a pattern-sensitivity test for locating "soft" RAM errors.

• If no address block is specified, then the 90 1 OA performs RAM test
over all blocks of memory specified as RAM under the Address
Space Information.

Example

RA M SHORT @ 1 000 - 3FFF

RAM LONG

See Also

AUTO TEST, BUS TEST, 10 TEST, ROM TEST, LEARN,
ADDRESS DESCRIPTOR (in Source File Syntax part of this
section)

6-93/6-94

RAM P

Syntax

��'LCDJ ___ @_--'?_"t"'�-+1 :
[REG F]

Functlon

Performs a series of write operations at a programmer-specified
location in the UUT microprocessor system, beginning with all data
bits equal to zero, and increasing by one until all data bits equal one.

Example

RAMP @ 34FO

See Also

ATOG, DTOG, READ, WALK, WRITE

6-95/6-96

R EAD

Syntax

addr

Functlon

Reads a programmer-specified location in the UUT microprocessor
system and places the data in register E.

READ STS reads the values of the UUT microprocessor status lines
and places the corresponding value in register C.

Example

REA D @ REG 1

RO S TS

See Also

PROBE, READ, WRITE, ATOG, DTOG, RAMP, WALK

6-97/6-98

Syntax

Functlon

Enters the specified data in the specified register.

• Symbolic register names can be used in this statement.

R EG

• Symbolic register names must be declared before use in the local or
global declarations section.

Example

REG 1 = 1 FF

TMP = REGA SHR 4

See Also

SYMBOLIC REGISTER NAME DECLARATION (in General
Information part of this section)

6- 99/6-1 00

Syntax

Functlon

R EPT
LOOP

REPT causes the action previously performed to be repeated once.
LOOP causes the action previously performed to be repeated
continuously.

• REPT and LOOP may not be specified as steps by themselves but
may be specified as modifiers after a troubleshooting test or
function has been specified.

• REPT and/ or LOOP can follow these test or troubleshooting
statements:

Example

AUTO TEST
BUS TEST
RAM TEST
ROM TEST
10 TEST

READ
WRITE
RAMP
WALK
ATOG
DTOG

RA MP @ REGF REPT REPT

WA LK @ 401 C = 1 LOOP

6-1 01 /6-1 02

R O M TEST

Syntax

Function

Computes a ROM signature for each block of ROM and compares it
to the reference ROM signature.

• If no address block is specified, then the 90 1 0A performs a ROM
Test over all blocks of memory specified under Address Space
Description and compares the signatures to those specified in the
Address Space lnformation.

• The signature expression must have a hexadecimal value in the
range 0-FFFF.

Example

ROM TES T

ROM TES T @ 8000 - 9FFF S/G A FC7

See Also

AUTO TEST, BUS TEST, 10 TEST, RAM TEST

6-1 03/6-1 04

R U N U UT

Syntax

--+(RUN UUT)h\�-----:==-=--=--=----�--r--+111
1 ..{ addr f--'

Functlon

Allows the interface pod microprocessor to execute the program code
stored in the UUT.

• If an address is specified, the UUT begins executing the code at the
address indicated.

• If no address is specified but a R UN UUT setup parameter is
present, the address from the setup statement is supplied.

• If no R UN UUT statement appeared in the setup section, but a pod
data file was included at the beginning of the source file, then the
value for UUT ADR will be supplied.

• If a pod data file was not included at the beginning of the source
file, the default address is 0000.

Example

RUN UUT

RUN UUT @ 1 000

See Also

Default Setup Parameters (Appendix D), R UN UUT (in Setup
Parameters part of this section)

6-1 05/6-1 06

STOP

Syntax

Functlon

Suspends program execution at desired points.

• To cause the 90 10A to resume program execution, the operator
must press the CONT key.

Example

S TOP

6-1 07/6-1 08

SYN C

Syntax

Functlon

Enables the operator to synchronize the probe operation to events in
the microprocessor bus or allow ,the probe to oscillate at 1 kHz (free
run).

Example

S YNC A

S YNC FREE-RUN

See Also

PRO BE

6-1 09/6-1 1 0

U NARY

Syntax

Functlon

Performs the specified unary operation on the contents of the indicated
register.

• Symbolic register names can be used in this statement.

• Register identifiers must be previously declared in the local or
global declaration section.

• Unary operator shorthand may not be used in this statement (i.e. ,
INC 3 REG5 is a syntax error).

Example

INC REGl

INC ERRCNT

See Also

REG

!ERRCNT is a symbolic register name

6-1 1 1/6-1 1 2

WALK

Syntax

Functlon

Rotates a programmer-specified bit pattern across data lines by
performing a series of write operations at a programmer-specified
address. The process continues until the data bits are rotated through
every possible position.

Example

WA LK @ 3480 = 7F

See Also

ATOG, DTOG, RAMP, READ, WRITE

6-1 1 3/6-1 1 4

WR ITE

Syntax

(REG C(

Functlon

Writes programmer-specified data to a programmer-specified location
in the UUT microprocessor system.

WRITE @ CTL causes the 90 10A to write control lines to the
programmer-specified logic levels.

• If an expression is used with the CTL form, it must have a binary
value from O to 1 1 1 1 1 1 1 1 . The binary string corresponds to the
eight possible UUT control lines. The 90 1 OA forces control lines
represented by a 1 high, and forces control lines represented by a O
low.

• Refer to the pod instruction manuals or the label on the interface
pod itself to identify which control lines are user-writable for a
specific pod.

Example

WRITE @ 7138 = 2F

WR C TL = 1 1 0001 00

See Also

ATOG, DTOG, RAMP, READ, WALK

6-1 1 5/6-1 1 6

APPE N D I CES

CONTENTS

A Keywords . A-1
B Predefined Register N ames . B - 1
C Optiona1 Keywords and Keyword Abbreviations C-1
D Defau1t Setup Parameters . D-1
E Parameter Limits . E -1
F Error Messages . F -1

* Identifies Setup Keywords

active * enable *
address * err *
and error *
assign errors *
atog ex
auto exercise *
aux execute

bad * force *

beep * free

binary
goto bit

bits *
bts * if

bus * illegal *

bytes in e
include

control *
information *

epi
interrupt *
10

e ti

label
data * learn
dec line *

�' declarations linesize *
dpy long
dtog loop

A p pend ix A
Keywo rds

newline * stop
no * sts

supply *
on * sync
or

test *
pod * timeout *
power * to
pro be transition *
program trap *

ram * unstall *
ramp uut *
rd
read walk
reg wr
rept write
rom *
run * yes *

setup *
shl
short
shr
sig *
space *
stall *

A-1 /A-2

Append ix B
P redef i n ed Reg ister Names

REGISTER
SYMBOLIC

FUNCTION
NAME

A BITMASK Bit Mask

B ROMSIG ROM Signatura

e STSCTL STS/CTL l nformation

o BITNUM Bit Number

E DAT Data
F ADA Address

o PBDAT Read Probe Data

B-1 /B-2

Append ix C
O pt i o na l Keywo rds and
Keywo rd A b b rev i at ions

OPTIONAL KEVWOROS ANO SVM BOLS

ELEMENT RESTRICTIONS TWO EQU IVALENT ANO
ACCEPTEO STATEMENTS

TEST None, always AUTO TEST

optional AUTO

@ None, always WRITE @ 1 00FF = 25

optional WR ITE 1 00FF = 25

- Optional only DPY TEST M ESSAGE
in DPY, AUX, and DPY-TEST M ESSAGE
SETUP parameters POD - 8080

POD 8080

LABEL x None, a lways 3: LABEL 3
optional {used in 3:

LABEL statements)

PROGRAM Optional only in EXECUTE PROGRAM 35
EXECUTE PROGRAM xx EXECUTE 35
commands

I N FORMATION None, always SETUP I N FORMATION
optional {used SETU P
in Setup and Address

Descriptor sections)

READ Optional only in R EAD PROBE
R EAD PROBE command PRO BE

xx BYTES None, always optional PROGRAM 1 0 524 BYTES
{used in program PROGRAM 1 0
statements)

C-1

Keyword Abbreviations

KEYWORD ABBREVIATIONS

KEYWORD ABBREVIATION

SYNC ADDRESS SYNC A

SYNC DATA SYNC D

SYNC FREE-AU N SYNC F
R EAD RD

WRITE WR

EXECUTE EX

C-2

A p pen d ix D
Defau lt Setu p Param eters

The information in the following table applies only to these pods:

1 802, 6502, 6800, 68000, 6802, 6809/ 6809E, 804 1 / 8048, 8080, 8085,
8086/ 8086MX, 8088/ 8088MX, 9900, Z80

Setup Parameters Common to All Pods Llsted Above

PARAMETER DEFAULT VALUE

TRAP BAO POWER SUPPL Y V ES

TRAP I LLEGAL ADDRESS VES

TRAP ACTIVE INTERRUPT NO

TRAP ACTIVE FORCE U N E VES

TRAP CONTROL ERROR VES

TRAP ADDRESS ERROR VES

TRAP DATA ERROR VES

EXERCISE ERRORS VES

BEEP ON ERR TRANSITION VES

T IMEOUT 200

STALL 1 3

UNSTALL 1 1

N EWLINE OOOOODOA

L INESIZE 79

*BUS TEST @ 0000
*RUN UUT @ 0000

* l f a pod name is not specified in the setup parameter section of the source f i le,

then the defau lt address for BUS TEST and RUN U UT are as ind icated. lf a pod

data file is included and the pod name is specified or if a pod is connected to the

901 0A when the hex file is downloaded, then the specified pod's defau lt BUS
TEST and RUN UUT addresses wi l l override these.

D-1

Default Setup Parameters

POD-SPECIFIC SETUP PARAMETERS

POD BUS TEST @ RUN U UT @
ENABLEABLE DEFAULT

LINE V ALU E

1 802 FFFF 0000 WAIT VES

6502 0000 FFFFFFFC RDV VES

6800 0000 FFFFFFFE TSC VES

DBE VES

HALT VES

68000 1 000FFE F6000000 HALT VES

BR/ACK VES
I NTR VES

6802 0000 FFFFFFFE MR VES

HALT VES

6809 0000 F FFFFFFE HALT VES

DMA VES

M R VES

6809E 0000 FFFFFFFE TSC VES

HALT VES

8041 2000 3000 UNUSED VES

8048 1 1 00 0000 UN U SED VES

8080 FFFF 0000 R EADV VES

HOLD VES

8085 FFFF 0000 READV VES

HOLD VES

8086 0000 FFFFO READV VES

HOLD VES

INTR VES

8086MX 0000 FFFFO READV VES

RQGTO VES
RQGT1 VES
I NTR VES

8088 0000 FFFFO READV VES

HOLD VES

I NTR VES

0-2

Default Setup Parameters

8088MX 0000 FFFFO R EADV VES
I NTR VES
RQGTO VES
RQGT1 VES

9900 FOOO 0000 R EADV VES
HOLD VES

zao FFFF 0000 BUSRQ VES
WAIT VES

D-3/D-4

A p pend ix E
Parameter L i m its

SETUP PARAMETER LIMITS

PARAMETER LIMIT

BUS TEST 0-FFFFFFFF

AUN UUT 0-FFFFFFFF

STALL O-FF

UNSTALL O-FF

L I N ESIZE 1 0-255

T IMEOUT 0-60000

N EWLINE 8 Hexadecimal Dig its

ADDRESS DESCRIPTOR PARAMETER LIMITS

PARAMETER LIMIT

signature (ROM) 0-FFFF

bit mask (10) 1 -FFFFFFFF

E-1 /E-2

INTRODUCTION

Append ix F
Error M essages

This appendix describes error messages that may be produced by the
90 10A Language Compiler programs. The appendix is divided into
three parts: Compiler Program Error Messages (9LC), File Transfer
Error Messages (XFER), and Disk Verification Program Error
Messages (VERIFY). Along with each error message is a description of
possible causes for the error. The description is not meant to be a
comprehensive list; other causes may also be possible.

Other messages may be produced by the host computer system. For
explanat ions of system-dependent errors , refe r to S ystem
Dependencies in Section 3 and to the user manual for the host system.

F-1

Error Messages

COMPILER PROGRAM ERROR M ESSAGES

Address range error

In an address range, the second address was incorrectly specified
smaller than the first address.

EXAMPLE: RAM @ 10000 - l OFF

Attempt to redefine symbollc name

A symbolic name was used in the wrong context (i.e., the name was
already used as a program name, but now you are attempting to use it
as a global register name, you are using a local register name as the
target of a GOTO, or you are using a label name as a program name m
an EXECUTE statement).

Blnary number expected

Can occur if you try to write a non-binary value to CTL or try to
DTOG a non-binary value for DTOG @ CTL.

Cannot define REG0-7 as g lobal reglsters

Y ou tried to assign a symbolic name to a local register (REG0-7) in a
globally declared ASSIGN statement. You can only assign symbolic
names to these registers locally.

Cannot open file <fl lename>

An illegal file name was entered.
Y o u attempted to open a file for writing on a write-protected disk.
Y o u attempted to open a file that does not exist.
Y o u attempted to crea te a file on a full disk.
An lnclude file cannot be opened because it would result in more files
being opened concurrently than your system allows.

Checksum error, should be xx

A checksum error was encountered.

Dupllcate label

A label was used more than once.

F-2

. . ,__

Error Messages

Dupllcate program

An attempt was made to compile a source file with two programs with
the same number or same name.

Error In hex l ine

There was a missing character in a binary program.

l l legal address

An address with more than eight hexadecimal digits (past the 32-bit
limit) was specified.

l l legal bitmask

A bitmask equal to O, or with more than eight hexadecimal digits was
specified.

l l legal bltnumber

A bitnumber was specified as hexadecimal rather than decimal, or the
bitnumber was out-of-range for the statement (i.e. in ATOG or DTOG
statement, bitnumber > 3 1 will cause this error, in DTOG @ CTL,
bitnumber > 7 will cause this error). Consult the appropriate page in
Section 6, Language Reference, for the statement in error to determine
the bitnumber limits.

l l legal label number

A hexadecimal label number(a single digit) is out of the range 0-9 or A
F. (For example, FF was used as a label number, or GOTO AB was
attempted.)

l l legal option

Y o u ha ve entered an illegal listing option from the interactive mode, or
have an illegal listing option in the command line.

l l legal program name

A keyword was used as a program name, a program name of all
hexadecimal characters was used, or one of the predefined register
names was used as a program name.

EXAMPLES: Program test
Program abcd
Program bitmask

F-3

Erro r M essages

l l legal program number

A program number out of the range 0-99, or a bad program number,
such as PROGRAM 44R, was used.

l l legal program order

Numbered programs are not in numerical order. Too many
symbolically named programs are between numbered programs.
Programs appear in the source file after program 99.

l l legal register number

A hexadecimal register number (a single digit) is out of the range 0-9 or
A-F (i.e., REG FF z l OOFF) .

l l legal slgnature

More than four hexadecimal digits were used in a signature.

l l legal value

A value is out-of-limits .

EXAMPLES: LINESIZE 300
TIMEOUT 70000

Y o u should check the appropriate page in Section 6, Language
Reference, to determine the legal range of values.

INCLUDEs nested too deeply

INCLUDE statements are nested past the maximum depth of five.
(Because this is a system dependency, your system may not allow
nesting to five.)

1 nput llne too long

Lines longer than the maximum of 255 characters were used.

l nvalld forcing llne

F-4

You probably did not include the appropriate pod data file in the
source file.
Y o u may ha ve misspelled the name of the forcing line in an EN ABLE
statement.
The pod data file may have been modified to contain a FORCELN
name more than six characters long.

Error Messages

Missing checksum, should be xxxx

There were no checksums in a binary program, or the checksums were
missing the delimiter characters (* or $).

Missing label

A label was used as the target of a GOTO, but was not created (through
a LABEL statement). Also, check for misspelling of label names.

Mixed symbolic label names with hex label numbers

Within a single program, all of the labels must be symbolically named
or all of the labels must be hexadecimal digits . The two cannot be
mixed.

Program not found

A literally-numbered program used as the target of an execute
statement (i.e., EXECUTE PROGRAM 96) was not present in the
source file(s) that was compiled.

Syntax error

The indicated line contains a statement that is incorrectly formed. lt
may ha ve a misspelled word, it may be incomplete, it may be missing a
keyword, or a keyword or hexadecimal constant may have been used
as a symbolic name.

Note that the spelling that the 90 1 0A uses on its display is not strictly
compatible with the compiled language.

Example: 90 1 0A Display: SET-TRAP BAD PWR SUPPLY? YES
9LC Syntax: TRAP BAD POWER SUPPLY - YES

Refer to the appropriate syntax diagram to verify correct spelling and
syntax.

Too many labels

More than 16 labels were used in one program.

Too many symbolic names

You used more than 1 00 local symbolic names (registerj label names)
or more than 200 global symbolic names (program names and register
names).

F-5

Error Messages

Undeflned symbollc name

A symbolic register name was used before that register was declared in
an ASSIGN statement or the register name was misspelled or a
symbolically-named program used as the target of an Execute
statement (i.e. , EXECUTE PROGRAM MISSING) was not present
in the source file(s) that was compiled.

USAGE: 91c [- lsda] [-h hexfile] [-1 [lisfile]] srcfile

Y ou ha ve tried to use the compiler program incorrectly (i.e., an illegal
option was specified, you did not put a filename after the -h flag, etc.).
The usage line above shows the correct format for using the compiler.

Warning: l llegal character

A character outside of the D PY / A UX character set has been u sed. F or
example, you ha ve attempted to use parenthesis() or brackets [] in a
DPY / AUX string. Valid characters are described on the AUX and
DPY pages in Section 6, Language Reference.

Warning: lncorrect byte count

The byte count listed on the program statement is incorrect. The
program has probably been edited.

Warning: lnvalid separator character

A character other than a tab, space, or dash was used to separate a
DPY 1 AVX string from the keyword.

Warning: strlng too long, dlscarding: xxxx

There are more than 32 characters in the AUX/ DPY string. The
compiler program will ignore all characters past the first 32.

" expected in INCLUDE statement

Missing quote surrounding the filename to be included.

F-6

Error Messages

FILE TRANSFER ERROR MESSAGES

Address descriptora must precede program information

You attempted to save address descriptors after saving programs.

Address descriptora previously saved In thls file

Y o u attempted to save address descriptors more than once.

Cannot open < filen ame>

An illegal file name was entered.
Y ou attempted to open a file for writing on a write-protected disk.
Y o u attempted to open a file that does not exist.
Y o u attempted to crea te a file on a full disk.

Cannot open temporary file

There is not enough room to open a temporary file.

Data transmission error detected

A checksum error was detected, indicating that data transmission
errors occurred. This is possibly due to a bad connection between the
90 10A and host computer, or the time delay specified by the Setup
parameter NEWLINE is not a large enough value. Check the
connections and try again, or try a larger time delay value.

l l legal optlon

An illegal option was used. Enter a valid option.

l l legal program ordering

You attempted to save a program with a number LOWER than a
program already saved.

1 ncorrect data format for transfer

You pressed the wrong keys on the 90 10A.
Port setup parameters were set incorrectly.
The 90 10A started from a stall.

Check the port parameters and try again.

F-7

Error Messages

No address descrlptors to save

Y ou attempted to save address descriptors when none were transferred
from the 90 10A.

No program lnformatlon to save

Y o u attempted to save programs when none were transferred from the
90 10A.

Not a valld port

The port name entered is not valid for the host system. U se a valid port
name.

Other lnformatlon al ready saved prevents entire file save

You attempted to save an entire file after already saving other
information.

Program <program number> already saved

Y ou attempted to save the same program more than once.

Program < program number> not found

Y o u attempted to save a program that was not transferred from the
901 0A.

Programs already saved wlll cause i l legal orderlng

Y o u attempted to save all programs after sorne ha ve airead y been
saved.

Setup lnformatlon must precede program information

Y ou attempted to save setup information after saving programs.

Setup lnformatlon prevlously saved In this file

Y ou attempted to save setup information more than once.

F-8

Error Messages

DISK VERIFICATION PROGRAM ERROR MESSAGES

The following messages are the result of file configuration errors. If the
errors persist after an attempt to recopy the indicated files, contact a
Fluke Technical Service Center for advice.

Data file VERIFV.DAT not found

The file VERIFY.DAT does not reside on the system default device.
Copy VERIFY.DAT from the original diskette to the system default
device.

File <filename> not found

The file filename does not reside on the system default device. If the file
is needed, copy it from the original diskette to the system default
device.

File <fllename> error -- signature ls <slg> , should be <slg>

The indicated file has been corrupted or has been modified. Check that
the appropriate Copy command was used (in systems where different
commands are used for binary and ASCII data}, check for bad blocks
on the d�sk, or verify that the version number for the file is the same as
specified in the VERIFY.DA T file.

l l legal or mlsslng slgnature for file <fllename>

The VERIFY .DAT file may ha ve been altered. Try using a new copy
from the original diskette.

<x> files tested -- < 1 > bad signatures, < 1 > mlsslng files

Provides a summary of the errors that occurred while running the
VERIFY program.

F-9/F-1 0

Abbreviations, Keyword, 4-17
Address Space lnformation, 4-8

Coding Shortcuts, 4-16
Default Entries, 4-18
Unary Operator Shorthand, 4- 18

Command Line Mode, 5-8
Comments, Program, 4-7
Compiler Program (9LC)

How it works, 1-5
Package, 1-7
Using, 5-6

Computer Systems, Host, 1-4
CP/M Operating Systems, 3-17

Data Files, Pod, 1-8, 4-1 1
Default Entries, 4-18
Default Setup Parameters, Appendix D

Disk Verification Program, 1-7

Errors, Syntax, 5-1 1
Extensions, Language, 1-6

File Transfer Program (XFER), 1-7
Files

Inclusion, 4- 19
Pod Data, 1-8, 4-1 1

Source, 5-4, 5-14

I N D EX

Format

General Program, 4-4
Hex, 5-16
Source, 5-14

Fluke 1 720A Instrument Controller, 3-4
Fluke 1 722A Instrument Controller, 3-9

General Program Format, 4-4
Getting S tarted, 3-1

Hex F ormat, 5-6
Host Computer S ystems

CP/M Operating Systems, 3-17
Fluke 1 720A Instrument Controller, 3-4
Fluke 1 722A Instrument Controller, 3-9
IBM Personal Computer, 3- 13
Kaypro I I Personal Computer, 3-17

IBM Personal Computer, 3-13
Inclusion, File, 4- 19
lnformation

Address Space, 4-8
Setup, 4-9

Interaction, Pod/90 1 0A, 4-12
lnteractive Mode, 5-6

Kaypro II Personal Computer, 3-17
Keyword Abbreviations, 4-17, Appendix C

1

lndex

Keywords, Appendix A

Keywords, Optional, 4-17, Appendix C

Labels, S ymbolic, 4-26
Language Extensions, 1-6
Listing File Options, 5-10

Modes

Command Line, 5-8
Interactive, 5-6

N ames

Predefined Register, 4-29, Appendix B

Symbolic, 4-22
Symbolic Program, 4-24
Symbolic Register, 4-28

Operator Shorthand, Unary, 4-18
Optional Keywords, 4-17
Options, Listing File, 5-11

Parameter Limits, Appendix E

Pod Data Files, 1-8, 4-11
Predefined Register N ames, 4-29, Appendix B

Preparing Source Files, 5-4
Program

Comments, 4-7
General Format, 4-4
Names, Symbolic, 4-24
Transferring, 5-12
Writing, Section 4

Programs

Compiler, 1-7
Disk Verification, 1-7
File Transfer, 1-7
9010A, 4-8

Reference, Language, Section 6
Register Names, Predefined, 4-29, Appendix B

Register Names, Symbolic, 4-28

2

Setup lnformation, 4-9
Setup Keywords, Appendix A

Setup Parameters, Default, Appendix D

Shortcuts, Coding, 4-16
Shorthand, Operator, Unary, 4-18
Source Files, Preparing, 5-4
Source Format, 5-14
Space Information, Address, 4-8
Statements, Section 6
Symbolic

Labels, 4-26
Names, 4-22
Program Names, 4-27
Register Names, 4-28

Syntax Diagrams

N otation, 6-4
Symbols, 6-5

Syntax Errors, 5-11, Appendix F

Transferring Programs, 5-12

Unary Operator Shorthand, 4-18
Use with the 9005A, 1-8
Using the Compiler, 5-6

Writing Programs, Section 4

XFER, File Transfer Program, 1-7

9LC, Compiler Program, 5-6
9005A, Using with the, 1-8
90 10A/Pod Interaction, 4-12
9010A Programs, 4-8

901 0A Language Compller Software Error Report Form
7- .We would l i ke to know how the 901 0A Language Compi lar meets your expectations, and whether yo u

ncou ntered any shortcomings, including m issin g features you consider important, cases where the
,..>rog ram does somet h i n g u nexpected, and bugs of all k inds. This i nformation w i l l help us to i 'Tl p rove
the product.

We suggest that you retain this sheet as an original and use a photocopy for each report.

Date:------------------ Name of User:

Co. Name: -------------------- Dept:

Street: ------------------------ City: ----------------------

Mail Stop: --------------------- Phone No. --------------------

Model N u mber (i .e . , 901 OA-920, etc. from d iskette label) :

Software Version N u m ber (from diskette labe l) :

Program Name a n d Version N u mber (i . e . , XFER v e r 1 .0, BOBO.POD ver. 1 . 2, etc.) : -------------

Host Operating System (i n clude Version N u m ber):

,.- Host Computer System (i .e. , I BM PC) : --------------------------------

Jescription of problem: -------------------------------------

How can problem be reproduced? (Attach l ist ing or separate sheet of paper, if appropriate) ------

Were you able to work around the problem? lf so, how? -------------------

RFJturn compl eted form to:
�

J o h n Fluke Mfg. Co .. lnc .

Dig ital Service Products

M/S 267D
9LC Product Manager
P O . Box C9090

Everett, WA 98206

ISSOE 11): 1 12/84

This change/errata oontains information necessary to ensure the accuracy of
the following manual . Enter the corrections in the manual if either one of
the following conditions exist :

1 . The revision letter stamped on the indicated PCB is equal to or
higher than that given with each change.

2 . No revision letter is indicated at the beginning of the change/errata .

Title:
Print Date:
Rev.- Date:

9010A Language Compiler
December 1983

C/E P!GE EFFFlCl'lVl'lY

Page No. Print Date

1 12/84

2 12/84
3 12/84
4 12/84
S 12/84
6 12/84

9010A LC

ERRATA 11

On page 3-1 1 under Fluke 1720A Instrument Controller 1 Systern Dependencies 1
CHAOOE: Test Editor

- TO: Text Editor

On page 3-6 1 change the second sentence in Step 3 to read:

SET1 a 17�0A systern progré1111 is included on the 1720A Systern Disk for
this purpose.

On page 3-11 � change the second sentence in Step 3 to read:

The Set Utility program (SETJ 1 a 1722A systern program1 is included on
the 1722A Systern Disk for this purpose.

On page 3-12 1 delete the second paragraph tmder Text Editor .

On page 3-15 1 add the OOTE at the end of Step 2 :

2400 baud i s the fastest data transfer rate allowable . If
transfer problems occur at 2400 baud1 try again at 1200
baud (switch setting 4) •

Following step 3 1 replace both paragraphs with:

You may use the IBM IDDE conrnand to configure the serial port . The
conmand line for the IBM PC that is used to implement the suggested
setting is :

IDDE OOMl : 24 1E1 8 1l

for 2400 baud1 and

MODE COMl : l2 1 E 1 8 1 l

for 1200 baud.

On page 3-17 1 between the two paragraphs under Introductionl add the
following OOTE:

12/84

The 9LC program will look for a file on the first
operational disk drive that it encounters1 and will "hang
up" if that disk drive is empty. If 1 for example 1 the 9LC
disk is in drive 1 1 and drive O is ernpty 1 the program
will hang up looking for the file on drive O . The disk
activity indicator on drive O will be on 1 and the display
will show "9LC" .

-1-

9010A LC

en page 3-20 :
Add the fo11owing to the end of the second paragraph:

(The Kaypro version of the program will only prompt for the baud
rate. l

Replace the last sentence of the fourth paragraph with :

This file contains the status and data addresses . The Kaypro version
also includes SIO initialization bytes .

On page 4-11 , add the fo11owing to the end of the first paragraph:

Data files rna.y not be available for newer pods . If a data file is not
included for the pod you are using , consult the Pod Instruction Manual
for inforrnation about creating the proper data file. You rna.y add this
new data file to the disk and Il'CLUDE it, or you rna.y insert the
inforrna.tion directly into the beginning of the program.

en page S-7 , insert the following note between the last two paragraphs :

The total m.unber of bytes required must not be more than
the rna.ximum memory size of the 9010A--10 , 192 bytes . If
the "'roTAL = xx bytes " message printed by the Canpiler
program exceeds 10 ,192 , then you must reduce the size of
the source program <sl .

On page 5-8 , replace the forrna.t line, with:

[deviceJ 9LC [-listoptionsJ [-H hexfileJ [-L [listfileJ J srcfile <RETORN>

On page 5-11 , add the fo11owing paragraphs at the bottan of the page :

The CPM version of the software allows you to redirect the reporting
of syntax errors to a file, instead of to the display. The Command
Line for directing the syntax error report to a file is:

[deviceJ 9LC [-listoptionsJ [-H hexfileJ [-L [listfileJ J srcfile >
msgfile <RETORN>

The "msgfile" specified in the conmand line will receive a11 reports
of syntax errors that rna.y occur during compiling, and also other
status messages that would norrnally be printed on the display.

en page 6-9 , replace the syntax diagram at the bottan of the page , with :

12/84 -2-

9010A LC

en page 6-69, place the \ character in the left column at the top of the
page.

en page D-1 , add the following to the list of pods :

z8ooo, 8051 , B05lx, 8031 , 80186 , 80188

On page D-3 , expand the table to include :

z8ooo 0800FFFE 0000 BUSREQ YES
WAIT YES

8051 30000 0000 UNUSED YES -
8051X 20000 0000 UNUSED YES

8031 10000 0000 utlJSED YES

80186 0000 FFFFO HOLD YES
EXTRDY YES

80188 0000 FFFFO HOLD YES
EXTRDY YES

12/84 -3-

9010A LC

J\ddendum

The following supplementary inforrnation is provided to clarify or expand
material in this manual .

�LINE SPACI�

Sorne host oomputers have specific requirements for mandatory spacing in
the oommand lines . You must pay particular attention to providing the
correct specifying syntax. For example, the SET RS-232 Utility for the
Fluke 1720A Instrument Controller requires that a space be inserted
after "KBl : " and between each parameter .

ASCII TEXT EDI'roRS

The Text Editor used on the host oomputer system must produce a source
file that contains only standard printable ASCII text characters and no
special control or formatting characters.

SET RS-232 UTILITY PROGRAM

Sorne early versions of the 1720A Set RS-232-c Utility program do not
implement the Sl'ALL option <versions l .x> • You may upgrade your software
by purchasing the 1720A-200U software upgrade package which contains,
among other things, the new version of the Set RS-232-C Utility program.
Contact a Fluke Technical Service Center for inforrnation.

REQUIRED SPACES

In the description of terms to be used in expressions <shown with a
syntax diagram on page 6-9) , if more than one operator is specified,
each operator must be separated from the rest by a space . A space must
also be inserted between REG and the following hex register number .

POD DATA FILES

New interface pods are continually being developed by Fluke. If a data
file is not on the disk for your pocl , you may use the simple procedure
shown below to create one (also, refer to the Instruction Manual for you
pocl) :

l . Using the editor , create a new file named <poclname>.POD. <podname>
is the name of your new poa , such as 80186 .

2 . Copy the following lines into the file.

12/84

<podname> Pod data file

FORCELN <name> = <n>
busadr = <address>
uutadr = <address>

<name> is the name of an enableable forcing line . <n> is the bit in
the enable mask that corresponds to that forcing line . Use a

-4-

9010A LC

separate line for each enableable forcing line . You must define all
of the pod ' s available forcing lines . The 80186 Pod, for example ,
has two enableable forcing lines , EXTRDY and HOLD, so you would
insert

FORCELN extrdy = O
FORCELN oold = 1

<address> is the hex address to be used for either BUS TEST
<busadr) or RJN uur <uutadr) . For exanple

busadr = 00000
uutadr = FFFFO

To specify the BUS TEST to begin at 00000 and the .RUN uur to begin
at FFFFO .

3 . Save this new file as file <filename> . POD on the disk .

If you would like to add your new Pod data file to the list of files that
are checked by the VERIFY program, do the foll<:Ming steps :

l . Edit file VERIFY.DAT { supplied on the 9LC disk) and add the
following line to the end of the file:

<filename> . POD DDDD

<filename> . POD is the name of the new Pod data file and DDDD is a
dunmy checksum for the file. <You ' 11 replace the dunmy checksum
with a real one later . >

2. Save the modified VERIFY.DAT file on the disk .

3 . Run the VERIFY program. The last two messages that it reports
should be :

File <filename > . POD error - signature i s cace, should be DDDD

zz files tested - 1 bad signatures, O missing files

<filename>.POD is the name of the new Pod data file, CCOC is the
correct checksum for the Pod data file, and zz is the nuni:ler of
files tested.

4 . Write down the correct checksum for the Pod data file <OCCC> •

S . Re-edit the file VERIFY. DA.T and replace the dlmlllY checksum that
you entered befare {DDDD) with the correct checksum <OCCC> .

-
6 . Run the VERIFY program again to confiilll that all changes have been

made satisfactorily. The last two messages that it reports should
nCM be:

File <filename> .POD verified

12/84 -5-

-

9010A LC

zz files tested -- no errors

RS-232 INI'ERFACE CABLE

The �l�used to oonnect the host computer to the Troubleshooter rnust
irnplement this wiring scheme :

(l) Optional . Use if your host oornputer requires RLSD (Received Line Signal
Detector) to be asserted high.

<2> Optional . Use if your host oornputer requires DSR (Data Set Ready) to be
asserted high.

(3) Optional . Use if your host oornputer requires RI <Ring Indicator > to be
asserted high.

12/84 -6-

